SyzygyData

  1. Wouter Castryck, Filip Cools, Jeroen Demeyer, and Alexander Lemmens, Computing graded Betti tables of toric surfaces, arXiv Pre-print: arxiv:1606.08181.
  2. Lawerence Ein, Daniel Erman, and Robert Lazarsfeld, A quick proof of nonvanishing for asymptotic syzygies, Algebraic Geometry 3-(2) (2012), 211-222. doi:10.14231/AG-2016-010.
  3. Lawerence Ein and Robert Lazarsfeld, Asymptotic syzygies of algebraic varieties, Invent. Math. 190 (2012), 603-646. doi: 10.1007/s00222-012-0384-5.
  4. David Eisenbud, Commutative algebra: With a view towards algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, New York (1995).
  5. David Eisenbud, The geometry of syzygies: A second course in algebraic geometry, Graduate Texts in Mathematics 229, Springer-Verlag, New York (2005).
  6. Daniel R. Grayson and Michael E. Stillman, Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
  7. Ornella Greco and Ivan Martino, Syzygies of the Veronese Modules, Communications in Algebra (to appear), arXiv Pre-print: arXiv:1403.4796.
  8. Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. doi:10.4310/jdg/1214438426.
  9. Mark L. Green, Koszul cohomology and the geometry of projective varieties. II, J. Differential Geom. 20 (1984), no. 1, 279–289. doi:10.4310/jdg/1214439000.
  10. Alexander Lemmens, On the n-th row of the graded Betti table of an n-dimensional toric variety, arXiv Pre-print: arxiv:1701.01393.