SyzygyData

Current Betti Table Entry:

\(n=1\)

\(d=10\)

\(b=5\)

\(p=2\)

\(q=0\)

0 1 2 3 4 5 6 7 8 9
0 6 50 180 360 420 252 · · · ·
1 · · · · · · 120 90 30 4
0 1 2 3 4 5 6 7 8 9
0 (5,0) (14,1) (22,3) (29,6) (35,10) (40,15) · · · ·
1 · · · · · · (48,27) (51,34) (53,42) (54,51)
0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 · · · ·
1 · · · · · · 1 1 1 1
0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 · · · ·
1 · · · · · · 1 1 1 1

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{2,\lambda}(1,5;10)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{2,0}(1,5;10)\). The dominant weights are displayed in green. Click on an entry for more info!

21 22 23
2 · · ·
3 · 1 ·
4 · · ·

Below is a plot displaying the multigraded Betti numbers. In the \(\textbf{a}=(a_0,a_1)\) spot we place \(\beta_{2,\textbf{a}}(1,5;10)\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
3 · · · · · · · · · · · · · · · · · · · 1 ·
4 · · · · · · · · · · · · · · · · · · 2 · ·
5 · · · · · · · · · · · · · · · · · 4 · · ·
6 · · · · · · · · · · · · · · · · 6 · · · ·
7 · · · · · · · · · · · · · · · 8 · · · · ·
8 · · · · · · · · · · · · · · 10 · · · · · ·
9 · · · · · · · · · · · · · 12 · · · · · · ·
10 · · · · · · · · · · · · 14 · · · · · · · ·
11 · · · · · · · · · · · 16 · · · · · · · · ·
12 · · · · · · · · · · 17 · · · · · · · · · ·
13 · · · · · · · · · 17 · · · · · · · · · · ·
14 · · · · · · · · 16 · · · · · · · · · · · ·
15 · · · · · · · 14 · · · · · · · · · · · · ·
16 · · · · · · 12 · · · · · · · · · · · · · ·
17 · · · · · 10 · · · · · · · · · · · · · · ·
18 · · · · 8 · · · · · · · · · · · · · · · ·
19 · · · 6 · · · · · · · · · · · · · · · · ·
20 · · 4 · · · · · · · · · · · · · · · · · ·
21 · 2 · · · · · · · · · · · · · · · · · · ·
22 1 · · · · · · · · · · · · · · · · · · · ·
23 · · · · · · · · · · · · · · · · · · · · ·