SyzygyData

Current Betti Table Entry:

\(n=1\)

\(d=8\)

\(b=3\)

\(p=0\)

\(q=0\)

0 1 2 3 4 5 6 7
0 4 24 56 56 · · · ·
1 · · · · 56 56 24 4
0 1 2 3 4 5 6 7
0 (3,0) (10,1) (16,3) (21,6) · · · ·
1 · · · · (29,14) (32,19) (34,25) (35,32)
0 1 2 3 4 5 6 7
0 1 1 1 1 · · · ·
1 · · · · 1 1 1 1
0 1 2 3 4 5 6 7
0 1 1 1 1 · · · ·
1 · · · · 1 1 1 1

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{0,\lambda}(1,3;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{0,0}(1,3;8)\). The dominant weights are displayed in green. Click on an entry for more info!

2 3 4
-1 · · ·
0 · 1 ·
1 · · ·

Below is a plot displaying the multigraded Betti numbers. In the \(\textbf{a}=(a_0,a_1)\) spot we place \(\beta_{0,\textbf{a}}(1,3;8)\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!

0 1 2 3 4
0 · · · 1 ·
1 · · 1 · ·
2 · 1 · · ·
3 1 · · · ·
4 · · · · ·