SyzygyData

Current Betti Table Entry:

\(n=1\)

\(d=9\)

\(b=0\)

\(p=8\)

\(q=1\)

0 1 2 3 4 5 6 7 8
0 1 · · · · · · · ·
1 · 36 168 378 504 420 216 63 8
0 1 2 3 4 5 6 7 8
0 (0,0) · · · · · · · ·
1 · (16,2) (23,4) (29,7) (34,11) (38,16) (41,22) (43,29) (44,37)
0 1 2 3 4 5 6 7 8
0 1 · · · · · · · ·
1 · 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
0 1 · · · · · · · ·
1 · 1 1 1 1 1 1 1 1

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{8,\lambda}(1,0;9)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{8,1}(1,0;9)\). The dominant weights are displayed in green. Click on an entry for more info!

43 44 45
36 · · ·
37 · 1 ·
38 · · ·

Below is a plot displaying the multigraded Betti numbers. In the \(\textbf{a}=(a_0,a_1)\) spot we place \(\beta_{8,\textbf{a}}(1,0;9)\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!

37 38 39 40 41 42 43 44 45
37 · · · · · · · 1 ·
38 · · · · · · 1 · ·
39 · · · · · 1 · · ·
40 · · · · 1 · · · ·
41 · · · 1 · · · · ·
42 · · 1 · · · · · ·
43 · 1 · · · · · · ·
44 1 · · · · · · · ·
45 · · · · · · · · ·