Current Betti Table Entry:

- Multiplicity: 1
- Dimension: 3
- Dominant: Yes

- Multiplicity: 1
- Dimension: 1
- Error: 0

- Multiplicity: 1
- Dimension: 1
- Error: 0

- Multiplicity: 1
- Dimension: 1
- Error: 0

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{3,\lambda}(2,0;2)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{3,1}(2,0;2)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!

2 | 3 | 4 | |
---|---|---|---|

2 | · | · | · |

3 | · | 1 | · |

4 | · | · | · |