SyzygyData

Current Betti Table Entry:

\(n=2\)

\(d=3\)

\(b=1\)

\(p=5\)

\(q=1\)

0 1 2 3 4 5 6 7
0 3 15 21 · · · · ·
1 · · 21 105 147 105 39 6
2 · · · · · · · ·
0 1 2 3 4 5 6 7
0 (1,0,0) (3,1,0) (5,1,1) · · · · ·
1 · · (5,5,0) (7,5,1) (8,6,2) (9,6,4) (9,8,5) (9,9,7)
2 · · · · · · · ·
0 1 2 3 4 5 6 7
0 1 1 2 · · · · ·
1 · · 1 4 5 5 2 1
2 · · · · · · · ·
0 1 2 3 4 5 6 7
0 1 1 2 · · · · ·
1 · · 1 4 5 5 2 1
2 · · · · · · · ·

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{5,\lambda}(2,1;3)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{5,1}(2,1;3)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!

6 7 8 9 10
5 · · · · ·
6 · 1 1 1 ·
7 · · 1 · ·
8 · · 1 · ·
9 · · · · ·

Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{5,\textbf{a}}(2,1;3)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!

3 4 5 6 7 8 9 10
3 · · · · · 1 · ·
4 · · · 1 3 3 1 ·
5 · · 1 5 6 5 1 ·
6 · 1 5 9 9 5 1 ·
7 · 3 6 9 6 3 · ·
8 1 3 5 5 3 1 · ·
9 · 1 1 1 · · · ·
10 · · · · · · · ·