0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (3,0,0) | (6,1,0) | (9,1,1) | (11,3,1) | (13,4,2) | (15,4,4) | (16,7,4) | (17,9,5) | (18,10,7) | (19,10,10) | · | · | · |
1 | · | · | · | · | · | · | · | (15,15,5) | (17,15,7) | (18,16,9) | (19,16,12) | (19,18,14) | (19,19,17) |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · |
Below is a plot displaying the Schur decomposition. In the λ=(λ0,λ1) spot we place β3,λ(2,3;4), the multiplicity of Sλ occuring in the decomposition of K3,0(2,3;4). Here λ is the weight (λ0,λ1,λ2) where λ2 is determined by the fact that |λ| equals d(p+q)+b. The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the (a0,a1) spot we place β3,a(2,3;4). Here a is the weight (a0,a1,a2) where a2 is determined by the fact that |a| equals d(p+q)+b. Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | · | · | · | · | · | · | 1 | 1 | 1 | 1 | · | · | · |
1 | · | · | · | 1 | 3 | 6 | 9 | 10 | 9 | 6 | 3 | 1 | · |
2 | · | · | 1 | 5 | 12 | 20 | 26 | 26 | 20 | 12 | 5 | 1 | · |
3 | · | 1 | 5 | 16 | 30 | 44 | 50 | 44 | 30 | 16 | 5 | 1 | · |
4 | · | 3 | 12 | 30 | 51 | 66 | 66 | 51 | 30 | 12 | 3 | · | · |
5 | · | 6 | 20 | 44 | 66 | 76 | 66 | 44 | 20 | 6 | · | · | · |
6 | 1 | 9 | 26 | 50 | 66 | 66 | 50 | 26 | 9 | 1 | · | · | · |
7 | 1 | 10 | 26 | 44 | 51 | 44 | 26 | 10 | 1 | · | · | · | · |
8 | 1 | 9 | 20 | 30 | 30 | 20 | 9 | 1 | · | · | · | · | · |
9 | 1 | 6 | 12 | 16 | 12 | 6 | 1 | · | · | · | · | · | · |
10 | · | 3 | 5 | 5 | 3 | · | · | · | · | · | · | · | · |
11 | · | 1 | 1 | 1 | · | · | · | · | · | · | · | · | · |
12 | · | · | · | · | · | · | · | · | · | · | · | · | · |