Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
(3,0,0) |
(6,1,0) |
(9,1,1) |
(11,3,1) |
(13,4,2) |
(15,4,4) |
(16,7,4) |
(17,9,5) |
(18,10,7) |
(19,10,10) |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
(15,15,5) |
(17,15,7) |
(18,16,9) |
(19,16,12) |
(19,18,14) |
(19,19,17) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
3 |
11 |
17 |
21 |
24 |
23 |
19 |
4 |
1 |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
5 |
11 |
11 |
7 |
2 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
3 |
12 |
28 |
46 |
56 |
48 |
25 |
4 |
1 |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
5 |
13 |
12 |
7 |
2 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(14,13,12)\)
- Multiplicity: 1
- Dimension: 8
- Dominant: No
\(\lambda=(15,13,11)\)
- Multiplicity: 2
- Dimension: 27
- Dominant: No
\(\lambda=(15,15,9)\)
- Multiplicity: 1
- Dimension: 28
- Dominant: No
\(\lambda=(17,11,11)\)
- Multiplicity: 1
- Dimension: 28
- Dominant: No
\(\lambda=(17,13,9)\)
- Multiplicity: 2
- Dimension: 125
- Dominant: No
\(\lambda=(17,15,7)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: Yes
\(\lambda=(16,15,8)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(16,13,10)\)
- Multiplicity: 1
- Dimension: 64
- Dominant: No
\(\lambda=(15,14,10)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(16,12,11)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(16,14,9)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\textbf{a}=(9,13,17)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,7,16)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,17,15)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,17,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,13,9)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,15,12)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,11,14)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,16,16)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,10,15)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,12,10)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,16,8)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,14,13)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,15,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,9,16)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,11,11)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,15,9)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,17,12)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,13,14)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,8,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,12,15)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,14,10)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,10,12)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,16,13)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,11,16)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,15,14)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,13,11)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,17,9)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,9,13)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,10,17)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,14,15)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,16,10)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,12,12)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,8,14)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,13,16)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,7,15)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,17,14)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,15,11)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,11,13)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,12,17)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,16,15)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,16,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,14,12)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,10,14)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,15,16)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,9,15)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,15,8)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,17,11)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,13,13)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,14,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,8,16)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,14,9)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,16,12)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,12,14)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,7,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,11,15)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,13,10)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,17,8)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,15,13)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,10,16)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,14,14)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,12,11)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,16,9)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,9,17)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,13,15)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,15,10)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,11,12)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,17,13)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,12,16)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,16,14)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,14,11)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,10,13)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,11,17)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,15,15)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,17,10)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,15,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,13,12)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,9,14)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,14,16)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,8,15)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,16,11)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,14,8)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,12,13)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{8,\lambda}(2,3;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{8,1}(2,3;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
13 |
14 |
15 |
16 |
17 |
18 |
10 |
· |
· |
· |
· |
· |
· |
11 |
· |
· |
· |
· |
1
| · |
12 |
· |
· |
· |
1
| · |
· |
13 |
· |
1
| 2
| 1
| 2
| · |
14 |
· |
· |
1
| 1
| · |
· |
15 |
· |
· |
1
| 1
| 1
| · |
16 |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{8,\textbf{a}}(2,3;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!