0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (3,0,0) | (6,1,0) | (9,1,1) | (11,3,1) | (13,4,2) | (15,4,4) | (16,7,4) | (17,9,5) | (18,10,7) | (19,10,10) | · | · | · |
1 | · | · | · | · | · | · | · | (15,15,5) | (17,15,7) | (18,16,9) | (19,16,12) | (19,18,14) | (19,19,17) |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{5,\lambda}(2,3;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{5,0}(2,3;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{5,\textbf{a}}(2,3;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | · | · | · | · | · | 1 | 2 | 3 | 4 | 4 | 3 | 2 | 1 | · | · |
3 | · | · | · | · | 2 | 6 | 11 | 15 | 17 | 15 | 11 | 6 | 2 | · | · |
4 | · | · | 1 | 4 | 12 | 25 | 38 | 46 | 46 | 38 | 25 | 12 | 4 | 1 | · |
5 | · | · | 4 | 13 | 33 | 58 | 80 | 87 | 80 | 58 | 33 | 13 | 4 | · | · |
6 | · | 2 | 12 | 33 | 68 | 106 | 130 | 130 | 106 | 68 | 33 | 12 | 2 | · | · |
7 | 1 | 6 | 25 | 58 | 106 | 147 | 165 | 147 | 106 | 58 | 25 | 6 | 1 | · | · |
8 | 2 | 11 | 38 | 80 | 130 | 165 | 165 | 130 | 80 | 38 | 11 | 2 | · | · | · |
9 | 3 | 15 | 46 | 87 | 130 | 147 | 130 | 87 | 46 | 15 | 3 | · | · | · | · |
10 | 4 | 17 | 46 | 80 | 106 | 106 | 80 | 46 | 17 | 4 | · | · | · | · | · |
11 | 4 | 15 | 38 | 58 | 68 | 58 | 38 | 15 | 4 | · | · | · | · | · | · |
12 | 3 | 11 | 25 | 33 | 33 | 25 | 11 | 3 | · | · | · | · | · | · | · |
13 | 2 | 6 | 12 | 13 | 12 | 6 | 2 | · | · | · | · | · | · | · | · |
14 | 1 | 2 | 4 | 4 | 2 | 1 | · | · | · | · | · | · | · | · | · |
15 | · | · | 1 | · | · | · | · | · | · | · | · | · | · | · | · |
16 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |