Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
(0,0,0) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
(6,2,0) |
(9,2,1) |
(11,4,1) |
(13,5,2) |
(15,5,4) |
(16,8,4) |
(17,10,5) |
(18,11,7) |
(19,11,10) |
(19,14,11) |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(18,18,12) |
(19,18,15) |
(19,19,18) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
2 |
9 |
17 |
23 |
23 |
26 |
25 |
21 |
13 |
1 |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
2 |
1 |
1 |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
2 |
9 |
28 |
55 |
79 |
86 |
69 |
38 |
14 |
1 |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
2 |
1 |
1 |
\(\lambda=(18,16,14)\)
- Multiplicity: 1
- Dimension: 27
- Dominant: No
\(\lambda=(18,18,12)\)
- Multiplicity: 1
- Dimension: 28
- Dominant: Yes
\(\textbf{a}=(17,15,16)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,17,15)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,13,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,18,15)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,16,16)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,14,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,12,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,17,16)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,15,17)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,13,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,18,12)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,18,16)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,16,17)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,14,18)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,15,18)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,17,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,17,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,16,18)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,18,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,16,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,18,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,17,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,15,15)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,17,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,18,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,14,16)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,16,15)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,18,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{10,\lambda}(2,0;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{10,2}(2,0;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
17 |
18 |
19 |
15 |
· |
· |
· |
16 |
· |
1
| · |
17 |
· |
· |
· |
18 |
· |
1
| · |
19 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{10,\textbf{a}}(2,0;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
12 |
· |
· |
· |
· |
· |
· |
1
| · |
13 |
· |
· |
· |
· |
· |
1
| 1
| · |
14 |
· |
· |
· |
· |
2
| 2
| 2
| · |
15 |
· |
· |
· |
2
| 3
| 3
| 2
| · |
16 |
· |
· |
2
| 3
| 4
| 3
| 2
| · |
17 |
· |
1
| 2
| 3
| 3
| 2
| 1
| · |
18 |
1
| 1
| 2
| 2
| 2
| 1
| 1
| · |
19 |
· |
· |
· |
· |
· |
· |
· |
· |