Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
(0,0,0) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
(6,2,0) |
(9,2,1) |
(11,4,1) |
(13,5,2) |
(15,5,4) |
(16,8,4) |
(17,10,5) |
(18,11,7) |
(19,11,10) |
(19,14,11) |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(18,18,12) |
(19,18,15) |
(19,19,18) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
2 |
9 |
17 |
23 |
23 |
26 |
25 |
21 |
13 |
1 |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
2 |
1 |
1 |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
2 |
9 |
28 |
55 |
79 |
86 |
69 |
38 |
14 |
1 |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
2 |
1 |
1 |
\(\lambda=(13,13,10)\)
- Multiplicity: 1
- Dimension: 10
- Dominant: No
\(\lambda=(14,11,11)\)
- Multiplicity: 1
- Dimension: 10
- Dominant: No
\(\lambda=(15,13,8)\)
- Multiplicity: 3
- Dimension: 81
- Dominant: No
\(\lambda=(18,11,7)\)
- Multiplicity: 1
- Dimension: 260
- Dominant: Yes
\(\lambda=(17,13,6)\)
- Multiplicity: 1
- Dimension: 260
- Dominant: Yes
\(\lambda=(16,11,9)\)
- Multiplicity: 3
- Dimension: 81
- Dominant: No
\(\lambda=(13,12,11)\)
- Multiplicity: 1
- Dimension: 8
- Dominant: No
\(\lambda=(14,14,8)\)
- Multiplicity: 1
- Dimension: 28
- Dominant: No
\(\lambda=(15,12,9)\)
- Multiplicity: 3
- Dimension: 64
- Dominant: No
\(\lambda=(17,12,7)\)
- Multiplicity: 1
- Dimension: 216
- Dominant: No
\(\lambda=(18,10,8)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: No
\(\lambda=(16,14,6)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: No
\(\lambda=(16,10,10)\)
- Multiplicity: 1
- Dimension: 28
- Dominant: No
\(\lambda=(14,13,9)\)
- Multiplicity: 3
- Dimension: 35
- Dominant: No
\(\lambda=(15,11,10)\)
- Multiplicity: 3
- Dimension: 35
- Dominant: No
\(\lambda=(17,11,8)\)
- Multiplicity: 2
- Dimension: 154
- Dominant: No
\(\lambda=(16,13,7)\)
- Multiplicity: 2
- Dimension: 154
- Dominant: No
\(\lambda=(14,12,10)\)
- Multiplicity: 3
- Dimension: 27
- Dominant: No
\(\lambda=(17,10,9)\)
- Multiplicity: 2
- Dimension: 80
- Dominant: No
\(\lambda=(16,12,8)\)
- Multiplicity: 3
- Dimension: 125
- Dominant: No
\(\lambda=(15,14,7)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\textbf{a}=(11,9,16)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,15,9)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,13,6)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,17,12)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,7,13)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,18,8)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,10,12)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,12,15)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,7,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,11,8)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,13,11)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,15,14)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,10,17)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,16,10)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,14,7)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,8,14)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,13,16)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,9,10)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,17,6)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,11,13)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,6,16)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,12,9)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,14,12)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,11,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,15,8)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,17,11)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,7,12)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,9,15)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,10,11)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,18,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,12,14)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,7,17)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,13,10)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,11,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,15,13)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,10,16)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,16,9)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,14,6)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,8,13)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,13,15)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,9,9)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,11,12)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,8,18)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,12,8)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,14,11)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(6,16,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,6,15)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,11,17)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,7,11)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,17,10)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,15,7)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,9,14)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(6,14,16)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,10,10)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,12,13)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,7,16)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,13,9)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,15,12)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,16,8)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,18,11)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,8,12)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,10,15)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,11,11)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,13,14)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,8,17)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,14,10)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,12,7)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,16,13)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,6,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,11,16)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,17,9)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,15,6)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,9,13)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,14,15)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,10,9)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,12,12)\)
- Multiplicity: 116
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,9,18)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,13,8)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,15,11)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,7,15)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,12,17)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,8,11)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,18,10)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,16,7)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,10,14)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,11,10)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,13,13)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,8,16)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,14,9)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,16,12)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,6,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,17,8)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,9,12)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,11,15)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,10,8)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,12,11)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,14,14)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,9,17)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,15,10)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,13,7)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(6,17,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,7,14)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,12,16)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,8,10)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,18,9)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,16,6)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,10,13)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(6,15,15)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,11,9)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,13,12)\)
- Multiplicity: 105
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,10,18)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,14,8)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,16,11)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,8,15)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(6,13,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,9,11)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,17,7)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,11,14)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,6,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,12,10)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,14,13)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{8,\lambda}(2,0;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{8,1}(2,0;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
9 |
· |
· |
· |
· |
· |
· |
· |
· |
10 |
· |
· |
· |
· |
1
| 2
| 1
| · |
11 |
· |
· |
1
| 3
| 3
| 2
| 1
| · |
12 |
· |
1
| 3
| 3
| 3
| 1
| · |
· |
13 |
· |
1
| 3
| 3
| 2
| 1
| · |
· |
14 |
· |
· |
1
| 1
| 1
| · |
· |
· |
15 |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{8,\textbf{a}}(2,0;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!