0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (0,0,0) | · | · | · | · | · | · | · | · | · | · | · | · |
1 | · | (6,2,0) | (9,2,1) | (11,4,1) | (13,5,2) | (15,5,4) | (16,8,4) | (17,10,5) | (18,11,7) | (19,11,10) | (19,14,11) | · | · |
2 | · | · | · | · | · | · | · | · | · | · | (18,18,12) | (19,18,15) | (19,19,18) |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{6,\lambda}(2,0;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{6,1}(2,0;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{6,\textbf{a}}(2,0;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | · | · | · | · | · | · | · | 1 | 2 | 3 | 3 | 2 | 1 | · | · |
4 | · | · | · | · | · | 1 | 4 | 9 | 14 | 16 | 14 | 9 | 4 | 1 | · |
5 | · | · | · | · | 2 | 9 | 21 | 36 | 46 | 46 | 36 | 21 | 9 | 2 | · |
6 | · | · | · | 2 | 12 | 33 | 62 | 89 | 100 | 89 | 62 | 33 | 12 | 2 | · |
7 | · | · | 2 | 12 | 38 | 82 | 130 | 163 | 163 | 130 | 82 | 38 | 12 | 2 | · |
8 | · | 1 | 9 | 33 | 82 | 148 | 206 | 230 | 206 | 148 | 82 | 33 | 9 | 1 | · |
9 | · | 4 | 21 | 62 | 130 | 206 | 256 | 256 | 206 | 130 | 62 | 21 | 4 | · | · |
10 | 1 | 9 | 36 | 89 | 163 | 230 | 256 | 230 | 163 | 89 | 36 | 9 | 1 | · | · |
11 | 2 | 14 | 46 | 100 | 163 | 206 | 206 | 163 | 100 | 46 | 14 | 2 | · | · | · |
12 | 3 | 16 | 46 | 89 | 130 | 148 | 130 | 89 | 46 | 16 | 3 | · | · | · | · |
13 | 3 | 14 | 36 | 62 | 82 | 82 | 62 | 36 | 14 | 3 | · | · | · | · | · |
14 | 2 | 9 | 21 | 33 | 38 | 33 | 21 | 9 | 2 | · | · | · | · | · | · |
15 | 1 | 4 | 9 | 12 | 12 | 9 | 4 | 1 | · | · | · | · | · | · | · |
16 | · | 1 | 2 | 2 | 2 | 1 | · | · | · | · | · | · | · | · | · |
17 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |