Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
(2,0,0) |
(5,1,0) |
(8,1,1) |
(10,3,1) |
(12,4,2) |
(14,4,4) |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
(9,9,0) |
(12,9,1) |
(14,10,2) |
(16,10,4) |
(17,12,5) |
(18,13,7) |
(19,13,10) |
(19,16,11) |
(19,18,13) |
(19,19,16) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
2 |
7 |
11 |
11 |
5 |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
1 |
4 |
19 |
23 |
24 |
21 |
17 |
11 |
3 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
2 |
7 |
12 |
13 |
5 |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
1 |
4 |
25 |
48 |
56 |
46 |
28 |
12 |
3 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(19,16,15)\)
- Multiplicity: 1
- Dimension: 24
- Dominant: No
\(\lambda=(19,17,14)\)
- Multiplicity: 1
- Dimension: 42
- Dominant: No
\(\lambda=(19,18,13)\)
- Multiplicity: 1
- Dimension: 48
- Dominant: Yes
\(\textbf{a}=(18,13,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,19,16)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,17,17)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,15,18)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,14,19)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,18,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,18,17)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,16,18)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,15,19)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,17,18)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,17,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,19,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,19,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,16,19)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,18,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,18,14)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,16,15)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,17,19)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,19,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,15,16)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,17,15)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,19,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,18,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,16,16)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,18,15)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,14,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,17,16)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,19,15)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,15,17)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,13,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,18,16)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,16,17)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,14,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{11,\lambda}(2,2;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{11,1}(2,2;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
18 |
19 |
20 |
15 |
· |
· |
· |
16 |
· |
1
| · |
17 |
· |
1
| · |
18 |
· |
1
| · |
19 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{11,\textbf{a}}(2,2;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
13 |
· |
· |
· |
· |
· |
1
| 1
| · |
14 |
· |
· |
· |
· |
2
| 3
| 2
| · |
15 |
· |
· |
· |
3
| 5
| 5
| 3
| · |
16 |
· |
· |
3
| 6
| 7
| 6
| 3
| · |
17 |
· |
2
| 5
| 7
| 7
| 5
| 2
| · |
18 |
1
| 3
| 5
| 6
| 5
| 3
| 1
| · |
19 |
1
| 2
| 3
| 3
| 2
| 1
| · |
· |
20 |
· |
· |
· |
· |
· |
· |
· |
· |