Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
(2,0,0) |
(5,1,0) |
(8,1,1) |
(10,3,1) |
(12,4,2) |
(14,4,4) |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
(9,9,0) |
(12,9,1) |
(14,10,2) |
(16,10,4) |
(17,12,5) |
(18,13,7) |
(19,13,10) |
(19,16,11) |
(19,18,13) |
(19,19,16) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
2 |
7 |
11 |
11 |
5 |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
1 |
4 |
19 |
23 |
24 |
21 |
17 |
11 |
3 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
2 |
7 |
12 |
13 |
5 |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
1 |
4 |
25 |
48 |
56 |
46 |
28 |
12 |
3 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(13,13,12)\)
- Multiplicity: 1
- Dimension: 3
- Dominant: No
\(\lambda=(15,13,10)\)
- Multiplicity: 5
- Dimension: 42
- Dominant: No
\(\lambda=(16,11,11)\)
- Multiplicity: 2
- Dimension: 21
- Dominant: No
\(\lambda=(17,13,8)\)
- Multiplicity: 3
- Dimension: 165
- Dominant: No
\(\lambda=(18,11,9)\)
- Multiplicity: 1
- Dimension: 132
- Dominant: No
\(\lambda=(16,15,7)\)
- Multiplicity: 2
- Dimension: 99
- Dominant: No
\(\lambda=(14,14,10)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(15,12,11)\)
- Multiplicity: 3
- Dimension: 24
- Dominant: No
\(\lambda=(17,12,9)\)
- Multiplicity: 3
- Dimension: 120
- Dominant: No
\(\lambda=(16,14,8)\)
- Multiplicity: 2
- Dimension: 105
- Dominant: No
\(\lambda=(14,13,11)\)
- Multiplicity: 3
- Dimension: 15
- Dominant: No
\(\lambda=(15,15,8)\)
- Multiplicity: 2
- Dimension: 36
- Dominant: No
\(\lambda=(17,15,6)\)
- Multiplicity: 1
- Dimension: 195
- Dominant: Yes
\(\lambda=(18,13,7)\)
- Multiplicity: 1
- Dimension: 273
- Dominant: Yes
\(\lambda=(17,11,10)\)
- Multiplicity: 2
- Dimension: 63
- Dominant: No
\(\lambda=(16,13,9)\)
- Multiplicity: 5
- Dimension: 90
- Dominant: No
\(\lambda=(14,12,12)\)
- Multiplicity: 1
- Dimension: 6
- Dominant: No
\(\lambda=(15,14,9)\)
- Multiplicity: 3
- Dimension: 48
- Dominant: No
\(\lambda=(17,14,7)\)
- Multiplicity: 1
- Dimension: 192
- Dominant: No
\(\lambda=(18,12,8)\)
- Multiplicity: 1
- Dimension: 210
- Dominant: No
\(\lambda=(16,12,10)\)
- Multiplicity: 3
- Dimension: 60
- Dominant: No
\(\textbf{a}=(11,9,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,15,11)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,13,8)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,17,14)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,7,15)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,12,17)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,18,10)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,16,7)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,10,14)\)
- Multiplicity: 70
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,15,16)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,11,10)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,13,13)\)
- Multiplicity: 131
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,14,9)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,16,12)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,8,16)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,13,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,9,12)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,17,8)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,11,15)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,12,11)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,14,14)\)
- Multiplicity: 70
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,9,17)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,15,10)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,13,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,17,13)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,7,14)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,16,6)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,18,9)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,10,13)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,12,16)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,11,9)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,13,12)\)
- Multiplicity: 131
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,15,15)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,10,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,16,11)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,14,8)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,8,15)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,13,17)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,9,11)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,17,7)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,11,14)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,6,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(6,16,16)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,12,10)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,14,13)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,15,9)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,17,12)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,7,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,9,16)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,10,12)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,18,8)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,12,15)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,7,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,13,11)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,15,14)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,10,17)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,16,10)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,14,7)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,18,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,8,14)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,13,16)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,17,6)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,11,13)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,12,9)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,14,12)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,16,15)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,6,16)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,11,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,17,11)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,15,8)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,9,15)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,14,17)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,10,11)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,18,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,12,14)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,7,17)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,13,10)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,15,13)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,16,9)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,18,12)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,8,13)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,10,16)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,11,12)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,13,15)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,8,18)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,14,11)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,12,8)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,16,14)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,6,15)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,11,17)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,17,10)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,15,7)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,9,14)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,14,16)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,10,10)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,12,13)\)
- Multiplicity: 131
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,13,9)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,15,12)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(6,17,15)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,7,16)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,12,18)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,8,12)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,18,11)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,16,8)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,10,15)\)
- Multiplicity: 63
- Dimension: 1
- Error: 0
\(\textbf{a}=(6,15,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,11,11)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,13,14)\)
- Multiplicity: 102
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,8,17)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,14,10)\)
- Multiplicity: 70
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,16,13)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,15,6)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,17,9)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,9,13)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,11,16)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,12,12)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,14,15)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{8,\lambda}(2,2;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{8,1}(2,2;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
10 |
· |
· |
· |
· |
· |
· |
· |
· |
11 |
· |
· |
· |
· |
2
| 2
| 1
| · |
12 |
· |
· |
1
| 3
| 3
| 3
| 1
| · |
13 |
· |
1
| 3
| 5
| 5
| 3
| 1
| · |
14 |
· |
· |
1
| 3
| 2
| 1
| · |
· |
15 |
· |
· |
· |
2
| 2
| 1
| · |
· |
16 |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{8,\textbf{a}}(2,2;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!