0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (2,0,0) | (5,1,0) | (8,1,1) | (10,3,1) | (12,4,2) | (14,4,4) | · | · | · | · | · | · | · |
1 | · | · | · | (9,9,0) | (12,9,1) | (14,10,2) | (16,10,4) | (17,12,5) | (18,13,7) | (19,13,10) | (19,16,11) | (19,18,13) | (19,19,16) |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{5,\lambda}(2,2;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{5,0}(2,2;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{5,\textbf{a}}(2,2;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | · |
5 | 1 | 2 | 3 | 4 | 5 | 5 | 4 | 3 | 2 | 1 | · | · |
6 | 2 | 3 | 6 | 7 | 9 | 7 | 6 | 3 | 2 | · | · | · |
7 | 2 | 4 | 7 | 9 | 9 | 7 | 4 | 2 | · | · | · | · |
8 | 3 | 5 | 9 | 9 | 9 | 5 | 3 | · | · | · | · | · |
9 | 3 | 5 | 7 | 7 | 5 | 3 | · | · | · | · | · | · |
10 | 3 | 4 | 6 | 4 | 3 | · | · | · | · | · | · | · |
11 | 2 | 3 | 3 | 2 | · | · | · | · | · | · | · | · |
12 | 2 | 2 | 2 | · | · | · | · | · | · | · | · | · |
13 | 1 | 1 | · | · | · | · | · | · | · | · | · | · |
14 | 1 | · | · | · | · | · | · | · | · | · | · | · |
15 | · | · | · | · | · | · | · | · | · | · | · | · |