Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
(1,0,0) |
(4,1,0) |
(7,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(8,5,0) |
(11,5,1) |
(13,6,2) |
(15,6,4) |
(16,9,4) |
(17,11,5) |
(18,12,7) |
(19,12,10) |
(19,15,11) |
(19,17,13) |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(19,19,19) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
1 |
13 |
21 |
25 |
26 |
23 |
23 |
17 |
9 |
2 |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
1 |
14 |
38 |
69 |
86 |
79 |
55 |
28 |
9 |
2 |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
\(\lambda=(17,16,12)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(19,14,12)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(18,16,11)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(18,14,13)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(16,15,14)\)
- Multiplicity: 1
- Dimension: 8
- Dominant: No
\(\lambda=(17,15,13)\)
- Multiplicity: 1
- Dimension: 27
- Dominant: No
\(\lambda=(18,17,10)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: Yes
\(\lambda=(19,15,11)\)
- Multiplicity: 1
- Dimension: 125
- Dominant: Yes
\(\lambda=(18,15,12)\)
- Multiplicity: 1
- Dimension: 64
- Dominant: No
\(\textbf{a}=(14,12,19)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,16,17)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,14,14)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,18,12)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,15,18)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,17,13)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,13,15)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,14,19)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,18,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,16,14)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,12,16)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,17,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,19,13)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,17,10)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,15,15)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,11,17)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,10,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,16,11)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,18,14)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,14,16)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,13,17)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,15,12)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,17,15)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,12,18)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,14,13)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,18,11)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,16,16)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,11,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,15,17)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,13,14)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,17,12)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,19,15)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,14,18)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,16,13)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,12,15)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,18,16)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,13,19)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,17,17)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,15,14)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,19,12)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,11,16)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,16,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,18,13)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,14,15)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,10,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,15,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,15,11)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,17,14)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,13,16)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,18,10)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,14,12)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,16,15)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,12,17)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,11,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,13,13)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,17,11)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,19,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,15,16)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,14,17)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,12,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,16,12)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,18,15)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,13,18)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,15,13)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,19,11)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,11,15)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,17,16)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{10,\lambda}(2,1;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{10,1}(2,1;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
15 |
16 |
17 |
18 |
19 |
20 |
13 |
· |
· |
· |
· |
· |
· |
14 |
· |
· |
· |
1
| 1
| · |
15 |
· |
1
| 1
| 1
| 1
| · |
16 |
· |
· |
1
| 1
| · |
· |
17 |
· |
· |
· |
1
| · |
· |
18 |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{10,\textbf{a}}(2,1;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!