0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (1,0,0) | (4,1,0) | (7,1,1) | · | · | · | · | · | · | · | · | · | · |
1 | · | · | (8,5,0) | (11,5,1) | (13,6,2) | (15,6,4) | (16,9,4) | (17,11,5) | (18,12,7) | (19,12,10) | (19,15,11) | (19,17,13) | · |
2 | · | · | · | · | · | · | · | · | · | · | · | · | (19,19,19) |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{5,\lambda}(2,1;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{5,1}(2,1;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{5,\textbf{a}}(2,1;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | · | · | · | · | · | · | · | 1 | 2 | 3 | 3 | 2 | 1 | · | · |
3 | · | · | · | · | · | · | 3 | 7 | 12 | 14 | 12 | 7 | 3 | · | · |
4 | · | · | · | · | 1 | 6 | 16 | 29 | 39 | 39 | 29 | 16 | 6 | 1 | · |
5 | · | · | · | 1 | 8 | 23 | 48 | 71 | 82 | 71 | 48 | 23 | 8 | 1 | · |
6 | · | · | 1 | 8 | 28 | 62 | 103 | 131 | 131 | 103 | 62 | 28 | 8 | 1 | · |
7 | · | · | 6 | 23 | 62 | 113 | 163 | 181 | 163 | 113 | 62 | 23 | 6 | · | · |
8 | · | 3 | 16 | 48 | 103 | 163 | 204 | 204 | 163 | 103 | 48 | 16 | 3 | · | · |
9 | 1 | 7 | 29 | 71 | 131 | 181 | 204 | 181 | 131 | 71 | 29 | 7 | 1 | · | · |
10 | 2 | 12 | 39 | 82 | 131 | 163 | 163 | 131 | 82 | 39 | 12 | 2 | · | · | · |
11 | 3 | 14 | 39 | 71 | 103 | 113 | 103 | 71 | 39 | 14 | 3 | · | · | · | · |
12 | 3 | 12 | 29 | 48 | 62 | 62 | 48 | 29 | 12 | 3 | · | · | · | · | · |
13 | 2 | 7 | 16 | 23 | 28 | 23 | 16 | 7 | 2 | · | · | · | · | · | · |
14 | 1 | 3 | 6 | 8 | 8 | 6 | 3 | 1 | · | · | · | · | · | · | · |
15 | · | · | 1 | 1 | 1 | · | · | · | · | · | · | · | · | · | · |
16 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |