Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
(1,0,0) |
(4,1,0) |
(7,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(8,5,0) |
(11,5,1) |
(13,6,2) |
(15,6,4) |
(16,9,4) |
(17,11,5) |
(18,12,7) |
(19,12,10) |
(19,15,11) |
(19,17,13) |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(19,19,19) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
1 |
13 |
21 |
25 |
26 |
23 |
23 |
17 |
9 |
2 |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
1 |
14 |
38 |
69 |
86 |
79 |
55 |
28 |
9 |
2 |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
\(\lambda=(15,14,12)\)
- Multiplicity: 2
- Dimension: 15
- Dominant: No
\(\lambda=(18,12,11)\)
- Multiplicity: 1
- Dimension: 63
- Dominant: No
\(\lambda=(17,14,10)\)
- Multiplicity: 3
- Dimension: 90
- Dominant: No
\(\lambda=(16,16,9)\)
- Multiplicity: 1
- Dimension: 36
- Dominant: No
\(\lambda=(18,15,8)\)
- Multiplicity: 1
- Dimension: 192
- Dominant: Yes
\(\lambda=(17,13,11)\)
- Multiplicity: 2
- Dimension: 60
- Dominant: No
\(\lambda=(16,15,10)\)
- Multiplicity: 2
- Dimension: 48
- Dominant: No
\(\lambda=(14,14,13)\)
- Multiplicity: 1
- Dimension: 3
- Dominant: No
\(\lambda=(16,14,11)\)
- Multiplicity: 3
- Dimension: 42
- Dominant: No
\(\lambda=(17,16,8)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: No
\(\lambda=(19,12,10)\)
- Multiplicity: 1
- Dimension: 132
- Dominant: Yes
\(\lambda=(18,14,9)\)
- Multiplicity: 2
- Dimension: 165
- Dominant: No
\(\lambda=(17,12,12)\)
- Multiplicity: 2
- Dimension: 21
- Dominant: No
\(\lambda=(15,15,11)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(16,13,12)\)
- Multiplicity: 2
- Dimension: 24
- Dominant: No
\(\lambda=(18,13,10)\)
- Multiplicity: 2
- Dimension: 120
- Dominant: No
\(\lambda=(17,15,9)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\textbf{a}=(9,14,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,8,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,12,15)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,18,8)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,14,10)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,10,12)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,16,13)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,11,16)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,15,14)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,13,11)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,17,9)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,19,12)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,10,17)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,14,15)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,16,10)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,12,12)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,18,13)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,9,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,13,16)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,17,14)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,15,11)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,11,13)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,12,17)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,16,15)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,18,10)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,14,12)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,10,14)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,11,18)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,15,16)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,9,15)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,17,11)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,15,8)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,13,13)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,10,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,14,17)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,8,16)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,18,15)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,12,14)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,14,9)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,16,12)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,13,18)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,17,16)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,11,15)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,17,8)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,13,10)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,19,11)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,15,13)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,12,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,16,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,10,16)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,14,14)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,12,11)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,16,9)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,18,12)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,15,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,9,17)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,13,15)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,15,10)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,11,12)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,17,13)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,8,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,12,16)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,16,14)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,14,11)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,18,9)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,10,13)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,11,17)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,15,15)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,17,10)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,13,12)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,9,14)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,10,18)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,14,16)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,8,15)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,18,14)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,16,11)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,12,13)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,13,17)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,17,15)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,19,10)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,15,12)\)
- Multiplicity: 59
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,11,14)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,12,18)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,16,16)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,10,15)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,16,8)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,12,10)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,18,11)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,14,13)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,11,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,15,17)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,9,16)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,13,14)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,11,11)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,15,9)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,17,12)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{9,\lambda}(2,1;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{9,1}(2,1;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
11 |
· |
· |
· |
· |
· |
· |
· |
· |
12 |
· |
· |
· |
· |
2
| 1
| 1
| · |
13 |
· |
· |
· |
2
| 2
| 2
| · |
· |
14 |
· |
1
| 2
| 3
| 3
| 2
| · |
· |
15 |
· |
· |
1
| 2
| 1
| 1
| · |
· |
16 |
· |
· |
· |
1
| 1
| · |
· |
· |
17 |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{9,\textbf{a}}(2,1;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!