Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
(1,0,0) |
(4,1,0) |
(7,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(8,5,0) |
(11,5,1) |
(13,6,2) |
(15,6,4) |
(16,9,4) |
(17,11,5) |
(18,12,7) |
(19,12,10) |
(19,15,11) |
(19,17,13) |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(19,19,19) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
1 |
13 |
21 |
25 |
26 |
23 |
23 |
17 |
9 |
2 |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
1 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
1 |
14 |
38 |
69 |
86 |
79 |
55 |
28 |
9 |
2 |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
\(\lambda=(19,15,15)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(19,17,13)\)
- Multiplicity: 1
- Dimension: 60
- Dominant: Yes
\(\textbf{a}=(18,13,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,19,15)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,17,16)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,15,17)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,14,18)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,18,16)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,16,17)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,13,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,15,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,17,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,19,16)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,17,17)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,14,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,16,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,18,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,16,14)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,18,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,15,19)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,17,18)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,19,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,15,15)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,19,13)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,17,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,16,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,18,18)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,16,15)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,18,14)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,14,16)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,17,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,17,15)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,19,14)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,15,16)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,13,17)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,18,15)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,16,16)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,14,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{11,\lambda}(2,1;4)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{11,1}(2,1;4)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
18 |
19 |
20 |
14 |
· |
· |
· |
15 |
· |
1
| · |
16 |
· |
· |
· |
17 |
· |
1
| · |
18 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{11,\textbf{a}}(2,1;4)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!