Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
(1,0,0) |
(5,1,0) |
(9,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(11,5,0) |
(15,5,1) |
(18,6,2) |
(21,6,4) |
(23,9,4) |
(25,11,5) |
(27,12,7) |
(29,12,10) |
(30,16,10) |
(31,19,11) |
(32,21,13) |
(33,22,16) |
(34,22,20) |
(34,26,21) |
(34,29,23) |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(33,33,25) |
(34,33,29) |
(34,34,33) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
1 |
1 |
3 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
2 |
26 |
43 |
53 |
63 |
68 |
72 |
73 |
72 |
68 |
63 |
53 |
43 |
26 |
2 |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
3 |
1 |
1 |
\(\lambda=(29,27,25)\)
- Multiplicity: 2
- Dimension: 27
- Dominant: No
\(\lambda=(32,29,20)\)
- Multiplicity: 1
- Dimension: 280
- Dominant: No
\(\lambda=(34,25,22)\)
- Multiplicity: 1
- Dimension: 280
- Dominant: No
\(\lambda=(33,27,21)\)
- Multiplicity: 2
- Dimension: 343
- Dominant: No
\(\lambda=(31,31,19)\)
- Multiplicity: 1
- Dimension: 91
- Dominant: No
\(\lambda=(32,28,21)\)
- Multiplicity: 1
- Dimension: 260
- Dominant: No
\(\lambda=(33,26,22)\)
- Multiplicity: 1
- Dimension: 260
- Dominant: No
\(\lambda=(32,27,22)\)
- Multiplicity: 2
- Dimension: 216
- Dominant: No
\(\lambda=(33,25,23)\)
- Multiplicity: 2
- Dimension: 162
- Dominant: No
\(\lambda=(31,29,21)\)
- Multiplicity: 2
- Dimension: 162
- Dominant: No
\(\lambda=(32,26,23)\)
- Multiplicity: 2
- Dimension: 154
- Dominant: No
\(\lambda=(31,28,22)\)
- Multiplicity: 2
- Dimension: 154
- Dominant: No
\(\lambda=(27,27,27)\)
- Multiplicity: 1
- Dimension: 1
- Dominant: No
\(\lambda=(32,25,24)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(31,27,23)\)
- Multiplicity: 3
- Dimension: 125
- Dominant: No
\(\lambda=(30,29,22)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(31,26,24)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(30,28,23)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(33,29,19)\)
- Multiplicity: 1
- Dimension: 440
- Dominant: Yes
\(\lambda=(31,25,25)\)
- Multiplicity: 2
- Dimension: 28
- Dominant: No
\(\lambda=(30,27,24)\)
- Multiplicity: 2
- Dimension: 64
- Dominant: No
\(\lambda=(29,29,23)\)
- Multiplicity: 2
- Dimension: 28
- Dominant: No
\(\lambda=(34,26,21)\)
- Multiplicity: 1
- Dimension: 405
- Dominant: Yes
\(\lambda=(33,28,20)\)
- Multiplicity: 1
- Dimension: 405
- Dominant: No
\(\lambda=(30,26,25)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(29,28,24)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\textbf{a}=(28,21,32)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,31,31)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,19,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,29,28)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,25,22)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,27,25)\)
- Multiplicity: 103
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,26,34)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,24,31)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,28,21)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,30,24)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,32,27)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,22,28)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,29,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,27,30)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,23,24)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,33,23)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,31,20)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,25,27)\)
- Multiplicity: 103
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,22,33)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,20,30)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,30,29)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,26,23)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,28,26)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,25,32)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,23,29)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,33,28)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,29,22)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,31,25)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,21,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,28,31)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,26,28)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,32,21)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,34,24)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,24,25)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,23,34)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,21,31)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,31,30)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,27,24)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,29,27)\)
- Multiplicity: 103
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,26,33)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,24,30)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,30,23)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,28,20)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,32,26)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,22,27)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,19,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,29,32)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,27,29)\)
- Multiplicity: 103
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,33,22)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,31,19)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,25,26)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,22,32)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,20,29)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,30,28)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,26,22)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,28,25)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,25,31)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,23,28)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,29,21)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,31,24)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,33,27)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,28,30)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,24,24)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,34,23)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,32,20)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,26,27)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,23,33)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,21,30)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,31,29)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,27,23)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,29,26)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,26,32)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,24,29)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,30,22)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,32,25)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,22,26)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,19,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,29,31)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,27,28)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,33,21)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,25,25)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,24,34)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,22,31)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,32,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,28,24)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,26,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,30,27)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,20,28)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,27,33)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,25,30)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,31,23)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,29,20)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,33,26)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,23,27)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,20,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,30,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,28,29)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,24,23)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,34,22)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,32,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,26,26)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,23,32)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,21,29)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,31,28)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,27,22)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,29,25)\)
- Multiplicity: 103
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,26,31)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,24,28)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,30,21)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,32,24)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,22,25)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,21,34)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,19,31)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,29,30)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,25,24)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,33,20)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,27,27)\)
- Multiplicity: 138
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,24,33)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,22,30)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,32,29)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,28,23)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,30,26)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,27,32)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,25,29)\)
- Multiplicity: 103
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,31,22)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,29,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,33,25)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,23,26)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,20,32)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,30,31)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,28,28)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,34,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,26,25)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,25,34)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,23,31)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,29,24)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,27,21)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,31,27)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,21,28)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,28,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,26,30)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,32,23)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,30,20)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,34,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,24,27)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,21,33)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,19,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,29,29)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,25,23)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,33,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,27,26)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,24,32)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,22,29)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,32,28)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,28,22)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,30,25)\)
- Multiplicity: 79
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,27,31)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,25,28)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,31,21)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,33,24)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,23,25)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,22,34)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,20,31)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,30,30)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,26,24)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,28,27)\)
- Multiplicity: 126
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,25,33)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,23,30)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,33,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,29,23)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,31,26)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,21,27)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,28,32)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,26,29)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,32,22)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,30,19)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,34,25)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,24,26)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{15,\lambda}(2,1;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{15,1}(2,1;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
24 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
25 |
· |
· |
· |
· |
· |
2
| 1
| 2
| 1
| · |
26 |
· |
· |
· |
· |
1
| 1
| 2
| 1
| 1
| · |
27 |
· |
1
| · |
2
| 2
| 3
| 2
| 2
| · |
· |
28 |
· |
· |
· |
1
| 1
| 2
| 1
| 1
| · |
· |
29 |
· |
· |
· |
2
| 1
| 2
| 1
| 1
| · |
· |
30 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
31 |
· |
· |
· |
· |
· |
1
| · |
· |
· |
· |
32 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{15,\textbf{a}}(2,1;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!