Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
(1,0,0) |
(5,1,0) |
(9,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(11,5,0) |
(15,5,1) |
(18,6,2) |
(21,6,4) |
(23,9,4) |
(25,11,5) |
(27,12,7) |
(29,12,10) |
(30,16,10) |
(31,19,11) |
(32,21,13) |
(33,22,16) |
(34,22,20) |
(34,26,21) |
(34,29,23) |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(33,33,25) |
(34,33,29) |
(34,34,33) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
1 |
1 |
3 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
2 |
26 |
43 |
53 |
63 |
68 |
72 |
73 |
72 |
68 |
63 |
53 |
43 |
26 |
2 |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
3 |
1 |
1 |
\(\lambda=(33,29,29)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(33,31,27)\)
- Multiplicity: 1
- Dimension: 60
- Dominant: No
\(\lambda=(33,33,25)\)
- Multiplicity: 1
- Dimension: 45
- Dominant: Yes
\(\textbf{a}=(28,30,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,32,32)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,30,29)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,32,28)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,28,30)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,31,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,33,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,33,28)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,31,29)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,29,30)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,27,31)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,32,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,26,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,32,29)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,30,30)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,28,31)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,33,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,25,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,27,32)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,33,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,33,29)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,31,30)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,29,31)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,26,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,28,32)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,30,31)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,32,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,32,30)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,27,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,29,32)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,31,31)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,33,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,31,27)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,33,30)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,28,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,30,32)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,32,31)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,30,28)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,32,27)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,29,33)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,31,32)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,33,31)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,29,29)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,31,28)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,33,27)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{16,\lambda}(2,1;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{16,2}(2,1;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
32 |
33 |
34 |
28 |
· |
· |
· |
29 |
· |
1
| · |
30 |
· |
· |
· |
31 |
· |
1
| · |
32 |
· |
· |
· |
33 |
· |
1
| · |
34 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{16,\textbf{a}}(2,1;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
25 |
· |
· |
· |
· |
· |
· |
· |
· |
1
| · |
26 |
· |
· |
· |
· |
· |
· |
· |
1
| 1
| · |
27 |
· |
· |
· |
· |
· |
· |
2
| 2
| 2
| · |
28 |
· |
· |
· |
· |
· |
2
| 3
| 3
| 2
| · |
29 |
· |
· |
· |
· |
3
| 4
| 5
| 4
| 3
| · |
30 |
· |
· |
· |
2
| 4
| 5
| 5
| 4
| 2
| · |
31 |
· |
· |
2
| 3
| 5
| 5
| 5
| 3
| 2
| · |
32 |
· |
1
| 2
| 3
| 4
| 4
| 3
| 2
| 1
| · |
33 |
1
| 1
| 2
| 2
| 3
| 2
| 2
| 1
| 1
| · |
34 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |