Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
(1,0,0) |
(5,1,0) |
(9,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(11,5,0) |
(15,5,1) |
(18,6,2) |
(21,6,4) |
(23,9,4) |
(25,11,5) |
(27,12,7) |
(29,12,10) |
(30,16,10) |
(31,19,11) |
(32,21,13) |
(33,22,16) |
(34,22,20) |
(34,26,21) |
(34,29,23) |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(33,33,25) |
(34,33,29) |
(34,34,33) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
1 |
1 |
3 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
2 |
26 |
43 |
53 |
63 |
68 |
72 |
73 |
72 |
68 |
63 |
53 |
43 |
26 |
2 |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
3 |
1 |
1 |
\(\lambda=(34,33,29)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: Yes
\(\textbf{a}=(31,33,32)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,31,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,29,34)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,34,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,32,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,30,34)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,33,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,33,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,31,34)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,32,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,34,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,34,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,32,34)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,33,34)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,33,30)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,31,31)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,30,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,32,31)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,34,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,31,32)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,33,31)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,29,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,32,32)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,34,31)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,30,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{17,\lambda}(2,1;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{17,2}(2,1;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
33 |
34 |
35 |
32 |
· |
· |
· |
33 |
· |
1
| · |
34 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{17,\textbf{a}}(2,1;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
29 |
30 |
31 |
32 |
33 |
34 |
35 |
29 |
· |
· |
· |
· |
1
| 1
| · |
30 |
· |
· |
· |
1
| 2
| 1
| · |
31 |
· |
· |
1
| 2
| 2
| 1
| · |
32 |
· |
1
| 2
| 2
| 2
| 1
| · |
33 |
1
| 2
| 2
| 2
| 2
| 1
| · |
34 |
1
| 1
| 1
| 1
| 1
| · |
· |
35 |
· |
· |
· |
· |
· |
· |
· |