Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
(0,0,0) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
(8,2,0) |
(12,2,1) |
(15,4,1) |
(18,5,2) |
(21,5,4) |
(23,8,4) |
(25,10,5) |
(27,11,7) |
(29,11,10) |
(30,15,10) |
(31,18,11) |
(32,20,13) |
(33,21,16) |
(34,21,20) |
(34,25,21) |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(30,30,15) |
(32,30,18) |
(33,31,21) |
(34,31,25) |
(34,33,28) |
(34,34,32) |
\(\lambda=(30,24,21)\)
- Multiplicity: 1
- Dimension: 154
- Dominant: No
\(\lambda=(29,26,20)\)
- Multiplicity: 1
- Dimension: 154
- Dominant: No
\(\lambda=(30,28,17)\)
- Multiplicity: 1
- Dimension: 270
- Dominant: No
\(\lambda=(28,28,19)\)
- Multiplicity: 1
- Dimension: 55
- Dominant: No
\(\lambda=(28,24,23)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(27,26,22)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(30,27,18)\)
- Multiplicity: 1
- Dimension: 280
- Dominant: No
\(\lambda=(28,27,20)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(26,26,23)\)
- Multiplicity: 1
- Dimension: 10
- Dominant: No
\(\lambda=(27,24,24)\)
- Multiplicity: 1
- Dimension: 10
- Dominant: No
\(\lambda=(29,24,22)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(30,26,19)\)
- Multiplicity: 1
- Dimension: 260
- Dominant: No
\(\lambda=(30,30,15)\)
- Multiplicity: 1
- Dimension: 136
- Dominant: Yes
\(\lambda=(28,26,21)\)
- Multiplicity: 2
- Dimension: 81
- Dominant: No
\(\lambda=(30,25,20)\)
- Multiplicity: 1
- Dimension: 216
- Dominant: No
\(\lambda=(28,25,22)\)
- Multiplicity: 1
- Dimension: 64
- Dominant: No
\(\textbf{a}=(30,16,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,26,28)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,30,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,24,25)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,25,21)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,27,24)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,29,27)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,19,28)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,24,30)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,30,23)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,28,20)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,22,27)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,17,30)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,27,29)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,23,23)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,29,16)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,25,26)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,20,29)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,30,28)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,26,22)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,28,25)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,23,28)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,29,21)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,27,18)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,21,25)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,28,30)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,30,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,24,24)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,26,27)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,21,30)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,27,23)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,25,20)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,29,26)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,19,27)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,24,29)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,30,22)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,28,19)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,22,26)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,17,29)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,27,28)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,23,22)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,25,25)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,26,21)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,28,24)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,30,27)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,20,28)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,25,30)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,21,24)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,29,20)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,23,27)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,18,30)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,28,29)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,24,23)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,30,16)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,26,26)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,21,29)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,27,22)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,29,25)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,19,26)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,24,28)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,30,21)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,28,18)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,22,25)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,29,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,25,24)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,27,27)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,17,28)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,22,30)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,28,23)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,26,20)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,30,26)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,20,27)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,15,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,25,29)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,29,19)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,23,26)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,18,29)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,28,28)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,24,22)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,30,15)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,26,25)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,27,21)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,29,24)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,21,28)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,26,30)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,22,24)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,28,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,30,20)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,24,27)\)
- Multiplicity: 39
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,19,30)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,29,29)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,25,23)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,27,26)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,22,29)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,28,22)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,26,19)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,30,25)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,20,26)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,25,28)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,29,18)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,23,25)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,30,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,24,21)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,26,24)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,28,27)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,18,28)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,23,30)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,29,23)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,27,20)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,21,27)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,16,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,26,29)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,22,23)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,30,19)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,24,26)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,19,29)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,29,28)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,25,22)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,27,25)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,22,28)\)
- Multiplicity: 23
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,28,21)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,30,24)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,20,25)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,27,30)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,23,24)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,29,17)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,25,27)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,20,30)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,30,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,26,23)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,28,26)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,18,27)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,23,29)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,29,22)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,27,19)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,21,26)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{13,\lambda}(2,0;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{13,2}(2,0;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
25 |
26 |
27 |
28 |
29 |
30 |
31 |
23 |
· |
· |
· |
· |
· |
· |
· |
24 |
· |
· |
1
| 1
| 1
| 1
| · |
25 |
· |
· |
· |
1
| · |
1
| · |
26 |
· |
1
| 1
| 2
| 1
| 1
| · |
27 |
· |
· |
· |
1
| · |
1
| · |
28 |
· |
· |
· |
1
| · |
1
| · |
29 |
· |
· |
· |
· |
· |
· |
· |
30 |
· |
· |
· |
· |
· |
1
| · |
31 |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{13,\textbf{a}}(2,0;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!