Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
(0,0,0) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
(8,2,0) |
(12,2,1) |
(15,4,1) |
(18,5,2) |
(21,5,4) |
(23,8,4) |
(25,10,5) |
(27,11,7) |
(29,11,10) |
(30,15,10) |
(31,18,11) |
(32,20,13) |
(33,21,16) |
(34,21,20) |
(34,25,21) |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(30,30,15) |
(32,30,18) |
(33,31,21) |
(34,31,25) |
(34,33,28) |
(34,34,32) |
\(\lambda=(30,29,26)\)
- Multiplicity: 1
- Dimension: 24
- Dominant: No
\(\lambda=(31,27,27)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(33,27,25)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(33,31,21)\)
- Multiplicity: 1
- Dimension: 231
- Dominant: Yes
\(\lambda=(32,29,24)\)
- Multiplicity: 2
- Dimension: 120
- Dominant: No
\(\lambda=(31,31,23)\)
- Multiplicity: 1
- Dimension: 45
- Dominant: No
\(\lambda=(30,28,27)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(33,30,22)\)
- Multiplicity: 1
- Dimension: 234
- Dominant: No
\(\lambda=(32,28,25)\)
- Multiplicity: 2
- Dimension: 90
- Dominant: No
\(\lambda=(31,30,24)\)
- Multiplicity: 1
- Dimension: 63
- Dominant: No
\(\lambda=(29,29,27)\)
- Multiplicity: 1
- Dimension: 6
- Dominant: No
\(\lambda=(31,29,25)\)
- Multiplicity: 2
- Dimension: 60
- Dominant: No
\(\lambda=(32,31,22)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\lambda=(33,29,23)\)
- Multiplicity: 1
- Dimension: 210
- Dominant: No
\(\lambda=(32,27,26)\)
- Multiplicity: 1
- Dimension: 48
- Dominant: No
\(\lambda=(31,28,26)\)
- Multiplicity: 1
- Dimension: 42
- Dominant: No
\(\lambda=(33,28,24)\)
- Multiplicity: 2
- Dimension: 165
- Dominant: No
\(\lambda=(32,30,23)\)
- Multiplicity: 1
- Dimension: 132
- Dominant: No
\(\textbf{a}=(24,29,32)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,33,22)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,27,29)\)
- Multiplicity: 60
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,28,25)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,30,28)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,32,31)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,22,32)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,33,27)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,31,24)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,25,31)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,30,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,26,27)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,28,30)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,23,33)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,29,26)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,31,29)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,30,22)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,32,25)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,24,29)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,26,32)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,27,28)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,33,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,29,31)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,30,27)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,28,24)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,32,30)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,22,31)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,27,33)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,33,26)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,31,23)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,25,30)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,30,32)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,26,26)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,28,29)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,29,25)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,31,28)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,33,31)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,23,32)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,24,28)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,32,24)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,26,31)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,31,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,27,27)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,29,30)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,24,33)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,30,26)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,32,29)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,22,30)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,33,25)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,31,22)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,25,29)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,27,32)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,28,28)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,30,31)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,31,27)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,29,24)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,33,30)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,23,31)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,28,33)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,32,23)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,26,30)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,21,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,31,32)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,27,26)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,29,29)\)
- Multiplicity: 60
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,30,25)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,32,28)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,24,32)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,25,28)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,31,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,33,24)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,27,31)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,28,27)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,30,30)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,25,33)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,31,26)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,29,23)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,33,29)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,23,30)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,32,22)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,26,29)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,28,32)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,29,28)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,27,25)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,31,31)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,21,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,32,27)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,30,24)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,24,31)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,29,33)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,25,27)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,33,23)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,27,30)\)
- Multiplicity: 53
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,22,33)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,32,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,28,26)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,30,29)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,31,25)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,33,28)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,23,29)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,25,32)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,26,28)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,32,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,28,31)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,29,27)\)
- Multiplicity: 60
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,31,30)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,21,31)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,26,33)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,32,26)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,30,23)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,24,30)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{15,\lambda}(2,0;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{15,2}(2,0;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
28 |
29 |
30 |
31 |
32 |
33 |
34 |
26 |
· |
· |
· |
· |
· |
· |
· |
27 |
· |
· |
· |
1
| 1
| 1
| · |
28 |
· |
· |
1
| 1
| 2
| 2
| · |
29 |
· |
1
| 1
| 2
| 2
| 1
| · |
30 |
· |
· |
· |
1
| 1
| 1
| · |
31 |
· |
· |
· |
1
| 1
| 1
| · |
32 |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{15,\textbf{a}}(2,0;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!