Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
(4,0,0) |
(8,1,0) |
(12,1,1) |
(15,3,1) |
(18,4,2) |
(21,4,4) |
(23,7,4) |
(25,9,5) |
(27,10,7) |
(29,10,10) |
(30,14,10) |
(31,17,11) |
(32,19,13) |
(33,20,16) |
(34,20,20) |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(24,24,6) |
(27,24,8) |
(29,25,10) |
(31,25,13) |
(32,27,15) |
(33,28,18) |
(34,28,22) |
(34,31,24) |
(34,33,27) |
(34,34,31) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(34,20,20)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: Yes
\(\textbf{a}=(20,20,34)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,32,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,22,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,24,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,26,27)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,21,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,25,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,27,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,24,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,20,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,30,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,22,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,23,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,33,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,25,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,22,31)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,26,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,28,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,20,28)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,29,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,31,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,21,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,23,27)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,20,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,24,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,22,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,26,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,21,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,27,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,29,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,24,28)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,20,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,30,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,22,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,33,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,23,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,25,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,27,27)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,22,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,26,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,28,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,20,27)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,25,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,21,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,31,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,23,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,20,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,24,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,26,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,23,31)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,27,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,29,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,21,28)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,30,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,20,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,22,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,24,27)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,21,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,25,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,23,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,27,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,22,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,28,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,20,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,25,28)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,21,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,31,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,23,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,20,31)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,34,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,24,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,26,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,23,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,27,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,29,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,21,27)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,22,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,32,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,20,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,24,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,21,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,25,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,27,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,28,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,30,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,20,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,22,28)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,31,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,21,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,23,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,25,27)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,20,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,24,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,26,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,28,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,23,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,29,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,21,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,26,28)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,22,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,32,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,24,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,21,31)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,25,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,27,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,24,30)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,28,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,30,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,20,24)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,22,27)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,23,23)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,21,20)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,25,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,22,32)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,20,29)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,26,22)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,28,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,29,21)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,21,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,23,28)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{14,\lambda}(2,4;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{14,0}(2,4;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
33 |
34 |
35 |
19 |
· |
· |
· |
20 |
· |
1
| · |
21 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{14,\textbf{a}}(2,4;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
20 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
21 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
· |
22 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
· |
· |
23 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
· |
· |
· |
24 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
· |
· |
· |
· |
25 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
· |
· |
· |
· |
· |
26 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
· |
· |
· |
· |
· |
· |
27 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
· |
· |
· |
· |
· |
· |
· |
28 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
· |
· |
· |
· |
· |
· |
· |
· |
29 |
1
| 1
| 1
| 1
| 1
| 1
| · |
· |
· |
· |
· |
· |
· |
· |
· |
· |
30 |
1
| 1
| 1
| 1
| 1
| · |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
31 |
1
| 1
| 1
| 1
| · |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
32 |
1
| 1
| 1
| · |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
33 |
1
| 1
| · |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
34 |
1
| · |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
35 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |