Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
(4,0,0) |
(8,1,0) |
(12,1,1) |
(15,3,1) |
(18,4,2) |
(21,4,4) |
(23,7,4) |
(25,9,5) |
(27,10,7) |
(29,10,10) |
(30,14,10) |
(31,17,11) |
(32,19,13) |
(33,20,16) |
(34,20,20) |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(24,24,6) |
(27,24,8) |
(29,25,10) |
(31,25,13) |
(32,27,15) |
(33,28,18) |
(34,28,22) |
(34,31,24) |
(34,33,27) |
(34,34,31) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(34,31,29)\)
- Multiplicity: 1
- Dimension: 42
- Dominant: No
\(\lambda=(34,32,28)\)
- Multiplicity: 1
- Dimension: 60
- Dominant: No
\(\lambda=(34,33,27)\)
- Multiplicity: 1
- Dimension: 63
- Dominant: Yes
\(\textbf{a}=(33,28,33)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,34,30)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,32,31)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,30,32)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,27,34)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,29,33)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,33,27)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,33,31)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,31,32)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,28,34)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,30,33)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,32,32)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,32,28)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,34,27)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,34,31)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,29,34)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,31,33)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,33,32)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,33,28)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,31,29)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(30,30,34)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,32,33)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,34,32)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,30,30)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,32,29)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,34,28)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(29,31,34)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,33,33)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,31,30)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,33,29)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,29,31)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(28,32,34)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,34,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,32,30)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,34,29)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,30,31)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,28,32)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(27,33,34)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(34,27,33)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(31,33,30)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(32,31,31)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(33,29,32)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{17,\lambda}(2,4;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{17,1}(2,4;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
33 |
34 |
35 |
30 |
· |
· |
· |
31 |
· |
1
| · |
32 |
· |
1
| · |
33 |
· |
1
| · |
34 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{17,\textbf{a}}(2,4;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
27 |
· |
· |
· |
· |
· |
· |
1
| 1
| · |
28 |
· |
· |
· |
· |
· |
2
| 3
| 2
| · |
29 |
· |
· |
· |
· |
3
| 5
| 5
| 3
| · |
30 |
· |
· |
· |
3
| 6
| 7
| 6
| 3
| · |
31 |
· |
· |
3
| 6
| 8
| 8
| 6
| 3
| · |
32 |
· |
2
| 5
| 7
| 8
| 7
| 5
| 2
| · |
33 |
1
| 3
| 5
| 6
| 6
| 5
| 3
| 1
| · |
34 |
1
| 2
| 3
| 3
| 3
| 2
| 1
| · |
· |
35 |
· |
· |
· |
· |
· |
· |
· |
· |
· |