0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (4,0,0) | (8,1,0) | (12,1,1) | (15,3,1) | (18,4,2) | (21,4,4) | (23,7,4) | (25,9,5) | (27,10,7) | (29,10,10) | (30,14,10) | (31,17,11) | (32,19,13) | (33,20,16) | (34,20,20) | · | · | · | · |
1 | · | · | · | · | · | · | · | · | · | (24,24,6) | (27,24,8) | (29,25,10) | (31,25,13) | (32,27,15) | (33,28,18) | (34,28,22) | (34,31,24) | (34,33,27) | (34,34,31) |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{3,\lambda}(2,4;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{3,0}(2,4;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{3,\textbf{a}}(2,4;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | · | · | · | · | · | · | 1 | 2 | 3 | 4 | 4 | 3 | 2 | 1 | · | · | · |
1 | · | · | · | 1 | 3 | 7 | 13 | 19 | 24 | 26 | 24 | 19 | 13 | 7 | 3 | 1 | · |
2 | · | · | 1 | 5 | 13 | 26 | 42 | 57 | 66 | 66 | 57 | 42 | 26 | 13 | 5 | 1 | · |
3 | · | 1 | 5 | 17 | 37 | 65 | 96 | 120 | 128 | 120 | 96 | 65 | 37 | 17 | 5 | 1 | · |
4 | · | 3 | 13 | 37 | 73 | 120 | 164 | 190 | 190 | 164 | 120 | 73 | 37 | 13 | 3 | · | · |
5 | · | 7 | 26 | 65 | 120 | 183 | 231 | 251 | 231 | 183 | 120 | 65 | 26 | 7 | · | · | · |
6 | 1 | 13 | 42 | 96 | 164 | 231 | 273 | 273 | 231 | 164 | 96 | 42 | 13 | 1 | · | · | · |
7 | 2 | 19 | 57 | 120 | 190 | 251 | 273 | 251 | 190 | 120 | 57 | 19 | 2 | · | · | · | · |
8 | 3 | 24 | 66 | 128 | 190 | 231 | 231 | 190 | 128 | 66 | 24 | 3 | · | · | · | · | · |
9 | 4 | 26 | 66 | 120 | 164 | 183 | 164 | 120 | 66 | 26 | 4 | · | · | · | · | · | · |
10 | 4 | 24 | 57 | 96 | 120 | 120 | 96 | 57 | 24 | 4 | · | · | · | · | · | · | · |
11 | 3 | 19 | 42 | 65 | 73 | 65 | 42 | 19 | 3 | · | · | · | · | · | · | · | · |
12 | 2 | 13 | 26 | 37 | 37 | 26 | 13 | 2 | · | · | · | · | · | · | · | · | · |
13 | 1 | 7 | 13 | 17 | 13 | 7 | 1 | · | · | · | · | · | · | · | · | · | · |
14 | · | 3 | 5 | 5 | 3 | · | · | · | · | · | · | · | · | · | · | · | · |
15 | · | 1 | 1 | 1 | · | · | · | · | · | · | · | · | · | · | · | · | · |
16 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |