0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 354 | 3975 | 28200 | 141450 | 531300 | ? | ? | ? | ? | ? | ? | ? | ? | ? | · | · | · | · | · | · | · | · | · | · | · |
1 | · | · | · | · | · | ? | ? | ? | ? | ? | ? | ? | ? | ? | 44574000 | 37999335 | 26678850 | 15502575 | 7438200 | 2922150 | 925980 | 231150 | 43800 | 5925 | 510 | 21 |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (4,0,0) | (9,1,0) | (14,1,1) | (18,3,1) | (22,4,2) | (26,4,4) | ? | ? | ? | ? | ? | ? | ? | ? | ? | · | · | · | · | · | · | · | · | · | · | · |
1 | · | · | · | · | · | ? | ? | ? | ? | ? | ? | ? | ? | ? | (48,30,16) | (50,30,20) | (51,34,21) | (52,37,23) | (53,39,26) | (54,40,30) | (55,40,35) | (55,45,36) | (55,49,38) | (55,52,41) | (55,54,45) | (55,55,50) |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{0,\lambda}(2,4;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{0,0}(2,4;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
3 | 4 | 5 | |
---|---|---|---|
-1 | · | · | · |
0 | · | 1 | · |
1 | · | · | · |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{0,\textbf{a}}(2,4;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!