Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
(4,0,0) |
(9,1,0) |
(14,1,1) |
(18,3,1) |
(22,4,2) |
(26,4,4) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(48,30,16) |
(50,30,20) |
(51,34,21) |
(52,37,23) |
(53,39,26) |
(54,40,30) |
(55,40,35) |
(55,45,36) |
(55,49,38) |
(55,52,41) |
(55,54,45) |
(55,55,50) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
1 |
4 |
22 |
41 |
60 |
78 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
166 |
160 |
152 |
137 |
123 |
104 |
85 |
67 |
46 |
26 |
5 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(55,55,50)\)
- Multiplicity: 1
- Dimension: 21
- Dominant: Yes
\(\textbf{a}=(50,55,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,51,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,53,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,53,52)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,55,51)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,55,53)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,52,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,54,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,54,52)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,52,53)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,53,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,55,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,55,52)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,55,50)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,53,53)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,51,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,54,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,50,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,54,51)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,54,53)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,52,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{25,\lambda}(2,4;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{25,1}(2,4;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
54 |
55 |
56 |
54 |
· |
· |
· |
55 |
· |
1
| · |
56 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{25,\textbf{a}}(2,4;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
50 |
51 |
52 |
53 |
54 |
55 |
56 |
50 |
· |
· |
· |
· |
· |
1
| · |
51 |
· |
· |
· |
· |
1
| 1
| · |
52 |
· |
· |
· |
1
| 1
| 1
| · |
53 |
· |
· |
1
| 1
| 1
| 1
| · |
54 |
· |
1
| 1
| 1
| 1
| 1
| · |
55 |
1
| 1
| 1
| 1
| 1
| 1
| · |
56 |
· |
· |
· |
· |
· |
· |
· |