Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
(4,0,0) |
(9,1,0) |
(14,1,1) |
(18,3,1) |
(22,4,2) |
(26,4,4) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(48,30,16) |
(50,30,20) |
(51,34,21) |
(52,37,23) |
(53,39,26) |
(54,40,30) |
(55,40,35) |
(55,45,36) |
(55,49,38) |
(55,52,41) |
(55,54,45) |
(55,55,50) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
1 |
4 |
22 |
41 |
60 |
78 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
166 |
160 |
152 |
137 |
123 |
104 |
85 |
67 |
46 |
26 |
5 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(54,49,45)\)
- Multiplicity: 2
- Dimension: 165
- Dominant: No
\(\lambda=(55,47,46)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: No
\(\lambda=(53,51,44)\)
- Multiplicity: 1
- Dimension: 132
- Dominant: No
\(\lambda=(54,48,46)\)
- Multiplicity: 2
- Dimension: 105
- Dominant: No
\(\lambda=(53,50,45)\)
- Multiplicity: 2
- Dimension: 120
- Dominant: No
\(\lambda=(52,52,44)\)
- Multiplicity: 1
- Dimension: 45
- Dominant: No
\(\lambda=(53,49,46)\)
- Multiplicity: 2
- Dimension: 90
- Dominant: No
\(\lambda=(52,51,45)\)
- Multiplicity: 1
- Dimension: 63
- Dominant: No
\(\lambda=(54,54,40)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: Yes
\(\lambda=(55,52,41)\)
- Multiplicity: 1
- Dimension: 384
- Dominant: Yes
\(\lambda=(53,48,47)\)
- Multiplicity: 1
- Dimension: 48
- Dominant: No
\(\lambda=(52,50,46)\)
- Multiplicity: 2
- Dimension: 60
- Dominant: No
\(\lambda=(54,53,41)\)
- Multiplicity: 1
- Dimension: 195
- Dominant: No
\(\lambda=(55,51,42)\)
- Multiplicity: 1
- Dimension: 375
- Dominant: No
\(\lambda=(52,49,47)\)
- Multiplicity: 1
- Dimension: 42
- Dominant: No
\(\lambda=(54,52,42)\)
- Multiplicity: 2
- Dimension: 231
- Dominant: No
\(\lambda=(55,50,43)\)
- Multiplicity: 2
- Dimension: 336
- Dominant: No
\(\lambda=(52,48,48)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(51,50,47)\)
- Multiplicity: 1
- Dimension: 24
- Dominant: No
\(\lambda=(51,49,48)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(54,51,43)\)
- Multiplicity: 2
- Dimension: 234
- Dominant: No
\(\lambda=(55,49,44)\)
- Multiplicity: 2
- Dimension: 273
- Dominant: No
\(\lambda=(50,50,48)\)
- Multiplicity: 1
- Dimension: 6
- Dominant: No
\(\lambda=(54,50,44)\)
- Multiplicity: 3
- Dimension: 210
- Dominant: No
\(\lambda=(55,48,45)\)
- Multiplicity: 2
- Dimension: 192
- Dominant: No
\(\lambda=(53,52,43)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\textbf{a}=(47,47,54)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,53,47)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,51,44)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,55,50)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,45,51)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,40,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,50,53)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,46,47)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,54,43)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,48,50)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,43,53)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,53,52)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,49,46)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,51,49)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,48,55)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,46,52)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,52,45)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,54,48)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,44,49)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,41,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,51,54)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,53,41)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,55,44)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,47,48)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,49,51)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,44,54)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,54,53)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,50,47)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,52,50)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,42,51)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,47,53)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,53,46)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,51,43)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,55,49)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,45,50)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,52,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,50,52)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,54,42)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,48,49)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,45,55)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,43,52)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,53,51)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,49,45)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,51,48)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,48,54)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,52,44)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,54,47)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,46,51)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,41,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,51,53)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,47,47)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,55,43)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,49,50)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,44,53)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,54,52)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,50,46)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,52,49)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,49,55)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,47,52)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,53,45)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,51,42)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,55,48)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,45,49)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,42,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,52,54)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,54,41)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,48,48)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,50,51)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,45,54)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,51,47)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,49,44)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,53,50)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,43,51)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,48,53)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,54,46)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,52,43)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,46,50)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,41,53)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,51,52)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,47,46)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,55,42)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,49,49)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,46,55)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,44,52)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,54,51)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,50,45)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,52,48)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,49,54)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,53,44)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,55,47)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,45,48)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,47,51)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,42,54)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,52,53)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,48,47)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,54,40)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,50,50)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,45,53)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,55,52)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,51,46)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,53,49)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,43,50)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,50,55)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,48,52)\)
- Multiplicity: 90
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,54,45)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,52,42)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,46,49)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,43,55)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,53,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,41,52)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,55,41)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,49,48)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,51,51)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,46,54)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,52,47)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,50,44)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,54,50)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,44,51)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,49,53)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,55,46)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,53,43)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,47,50)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,42,53)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,52,52)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,48,46)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,50,49)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,47,55)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,45,52)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,55,51)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,51,45)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,53,48)\)
- Multiplicity: 58
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,50,54)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,52,41)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,54,44)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,46,48)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,48,51)\)
- Multiplicity: 113
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,43,54)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,53,53)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,49,47)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,51,50)\)
- Multiplicity: 99
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,46,53)\)
- Multiplicity: 52
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,52,46)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,50,43)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,54,49)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,44,50)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,51,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,49,52)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,55,45)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,53,42)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,47,49)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,44,55)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(40,54,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,42,52)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,52,51)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,48,45)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,50,48)\)
- Multiplicity: 124
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{23,\lambda}(2,4;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{23,1}(2,4;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
46 |
· |
· |
· |
· |
· |
· |
· |
· |
47 |
· |
· |
· |
· |
· |
· |
1
| · |
48 |
· |
· |
· |
1
| 1
| 2
| 2
| · |
49 |
· |
· |
1
| 1
| 2
| 2
| 2
| · |
50 |
· |
1
| 1
| 2
| 2
| 3
| 2
| · |
51 |
· |
· |
· |
1
| 1
| 2
| 1
| · |
52 |
· |
· |
· |
1
| 1
| 2
| 1
| · |
53 |
· |
· |
· |
· |
· |
1
| · |
· |
54 |
· |
· |
· |
· |
· |
1
| · |
· |
55 |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{23,\textbf{a}}(2,4;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!