Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
(5,0,0) |
(10,1,0) |
(15,1,1) |
(19,3,1) |
(23,4,2) |
(27,4,4) |
(30,7,4) |
(33,9,5) |
(36,10,7) |
(39,10,10) |
(41,14,10) |
(43,17,11) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(54,45,32) |
(55,45,37) |
(55,49,39) |
(55,52,42) |
(55,54,46) |
(55,55,51) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
1 |
5 |
26 |
46 |
67 |
85 |
104 |
123 |
137 |
152 |
160 |
166 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
78 |
60 |
41 |
22 |
4 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(52,49,48)\)
- Multiplicity: 1
- Dimension: 24
- Dominant: No
\(\lambda=(53,51,45)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(55,51,43)\)
- Multiplicity: 1
- Dimension: 315
- Dominant: No
\(\lambda=(54,53,42)\)
- Multiplicity: 1
- Dimension: 168
- Dominant: No
\(\lambda=(54,49,46)\)
- Multiplicity: 2
- Dimension: 120
- Dominant: No
\(\lambda=(51,50,48)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(52,52,45)\)
- Multiplicity: 1
- Dimension: 36
- Dominant: No
\(\lambda=(53,50,46)\)
- Multiplicity: 2
- Dimension: 90
- Dominant: No
\(\lambda=(55,50,44)\)
- Multiplicity: 2
- Dimension: 273
- Dominant: No
\(\lambda=(54,52,43)\)
- Multiplicity: 2
- Dimension: 195
- Dominant: No
\(\lambda=(54,48,47)\)
- Multiplicity: 1
- Dimension: 63
- Dominant: No
\(\lambda=(52,51,46)\)
- Multiplicity: 1
- Dimension: 48
- Dominant: No
\(\lambda=(53,49,47)\)
- Multiplicity: 1
- Dimension: 60
- Dominant: No
\(\lambda=(55,49,45)\)
- Multiplicity: 1
- Dimension: 210
- Dominant: No
\(\lambda=(54,51,44)\)
- Multiplicity: 2
- Dimension: 192
- Dominant: No
\(\lambda=(52,50,47)\)
- Multiplicity: 1
- Dimension: 42
- Dominant: No
\(\lambda=(53,48,48)\)
- Multiplicity: 1
- Dimension: 21
- Dominant: No
\(\lambda=(53,52,44)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: No
\(\lambda=(54,54,41)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: Yes
\(\lambda=(55,48,46)\)
- Multiplicity: 2
- Dimension: 132
- Dominant: No
\(\lambda=(55,52,42)\)
- Multiplicity: 1
- Dimension: 330
- Dominant: Yes
\(\lambda=(54,50,45)\)
- Multiplicity: 2
- Dimension: 165
- Dominant: No
\(\textbf{a}=(47,47,55)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,53,48)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,51,45)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,55,51)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,45,52)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,50,54)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,46,48)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,54,44)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,48,51)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,43,54)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,53,53)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,49,47)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,51,50)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,46,53)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,52,46)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,54,49)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,44,50)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,51,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,53,42)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,55,45)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,47,49)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,49,52)\)
- Multiplicity: 70
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,44,55)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,54,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,50,48)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,52,51)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,42,52)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,47,54)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,53,47)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,51,44)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,55,50)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,45,51)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,50,53)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,54,43)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,48,50)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,43,53)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,53,52)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,49,46)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,51,49)\)
- Multiplicity: 88
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,48,55)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,52,45)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,54,48)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,46,52)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,51,54)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,47,48)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,55,44)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,49,51)\)
- Multiplicity: 88
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,44,54)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,54,53)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,50,47)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,52,50)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,47,53)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,53,46)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,51,43)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,55,49)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,45,50)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,52,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,54,42)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,48,49)\)
- Multiplicity: 70
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,50,52)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,45,55)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,51,48)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,49,45)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,53,51)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,43,52)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,48,54)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,54,47)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,52,44)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,46,51)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,41,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,51,53)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,47,47)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,55,43)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,49,50)\)
- Multiplicity: 96
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,44,53)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,54,52)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,50,46)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,52,49)\)
- Multiplicity: 70
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,49,55)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,53,45)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,55,48)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,45,49)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,47,52)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,42,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,52,54)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,48,48)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,54,41)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,50,51)\)
- Multiplicity: 83
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,45,54)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,51,47)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,53,50)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,43,51)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,48,53)\)
- Multiplicity: 48
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,54,46)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,52,43)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,46,50)\)
- Multiplicity: 37
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,55,42)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,49,49)\)
- Multiplicity: 88
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,51,52)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,46,55)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,52,48)\)
- Multiplicity: 70
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,50,45)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,54,51)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,44,52)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,49,54)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,55,47)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,53,44)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,47,51)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,42,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,52,53)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,48,47)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,50,50)\)
- Multiplicity: 96
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,45,53)\)
- Multiplicity: 26
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,55,52)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,51,46)\)
- Multiplicity: 47
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,53,49)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,50,55)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,52,42)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,54,45)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,46,49)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,48,52)\)
- Multiplicity: 70
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,43,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,53,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,49,48)\)
- Multiplicity: 70
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,51,51)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,46,54)\)
- Multiplicity: 22
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,52,47)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,50,44)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,54,50)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,44,51)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,49,53)\)
- Multiplicity: 44
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,55,46)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,53,43)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,47,50)\)
- Multiplicity: 61
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,42,53)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,52,52)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,48,46)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,50,49)\)
- Multiplicity: 96
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{23,\lambda}(2,5;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{23,1}(2,5;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
50 |
51 |
52 |
53 |
54 |
55 |
56 |
47 |
· |
· |
· |
· |
· |
· |
· |
48 |
· |
· |
· |
1
| 1
| 2
| · |
49 |
· |
· |
1
| 1
| 2
| 1
| · |
50 |
· |
1
| 1
| 2
| 2
| 2
| · |
51 |
· |
· |
1
| 1
| 2
| 1
| · |
52 |
· |
· |
1
| 1
| 2
| 1
| · |
53 |
· |
· |
· |
· |
1
| · |
· |
54 |
· |
· |
· |
· |
1
| · |
· |
55 |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{23,\textbf{a}}(2,5;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!