Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
(5,0,0) |
(10,1,0) |
(15,1,1) |
(19,3,1) |
(23,4,2) |
(27,4,4) |
(30,7,4) |
(33,9,5) |
(36,10,7) |
(39,10,10) |
(41,14,10) |
(43,17,11) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(54,45,32) |
(55,45,37) |
(55,49,39) |
(55,52,42) |
(55,54,46) |
(55,55,51) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
1 |
5 |
26 |
46 |
67 |
85 |
104 |
123 |
137 |
152 |
160 |
166 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
78 |
60 |
41 |
22 |
4 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(55,51,49)\)
- Multiplicity: 1
- Dimension: 60
- Dominant: No
\(\lambda=(55,54,46)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: Yes
\(\lambda=(55,53,47)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(55,52,48)\)
- Multiplicity: 1
- Dimension: 90
- Dominant: No
\(\textbf{a}=(50,50,55)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,52,50)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,48,52)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,54,53)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,53,54)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,51,51)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,55,49)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,47,53)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,52,55)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,54,50)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,50,52)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,46,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,55,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,55,46)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,53,51)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,49,53)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,54,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,54,47)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,52,52)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,48,54)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,47,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,53,48)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,55,51)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,51,53)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,50,54)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,52,49)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,54,52)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,49,55)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,51,50)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,55,48)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,53,53)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,52,54)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,50,51)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,54,49)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,51,55)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,53,50)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,49,52)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,55,53)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,54,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,52,51)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,54,46)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,48,53)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,53,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,55,50)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,53,47)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,51,52)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,47,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,46,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,52,48)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,54,51)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,50,53)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,55,47)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,51,49)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,53,52)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,49,54)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,48,55)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,50,50)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,54,48)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,52,53)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,51,54)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,49,51)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,53,49)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,55,52)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{24,\lambda}(2,5;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{24,1}(2,5;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
54 |
55 |
56 |
50 |
· |
· |
· |
51 |
· |
1
| · |
52 |
· |
1
| · |
53 |
· |
1
| · |
54 |
· |
1
| · |
55 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{24,\textbf{a}}(2,5;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!