0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 21 | 510 | 5925 | 43800 | 231150 | 925980 | 2922150 | 7438200 | 15502575 | 26678850 | 37999335 | 44574000 | ? | ? | ? | ? | ? | ? | ? | ? | ? | · | · | · | · | · |
1 | · | · | · | · | · | · | · | · | · | · | · | ? | ? | ? | ? | ? | ? | ? | ? | ? | 531300 | 141450 | 28200 | 3975 | 354 | 15 |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (5,0,0) | (10,1,0) | (15,1,1) | (19,3,1) | (23,4,2) | (27,4,4) | (30,7,4) | (33,9,5) | (36,10,7) | (39,10,10) | (41,14,10) | (43,17,11) | ? | ? | ? | ? | ? | ? | ? | ? | ? | · | · | · | · | · |
1 | · | · | · | · | · | · | · | · | · | · | · | ? | ? | ? | ? | ? | ? | ? | ? | ? | (54,45,32) | (55,45,37) | (55,49,39) | (55,52,42) | (55,54,46) | (55,55,51) |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{25,\lambda}(2,5;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{25,1}(2,5;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
54 | 55 | 56 | |
---|---|---|---|
54 | · | · | · |
55 | · | 1 | · |
56 | · | · | · |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{25,\textbf{a}}(2,5;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!