0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (2,0,0) | (6,1,0) | (10,1,1) | (13,3,1) | (16,4,2) | (19,4,4) | · | · | · | · | · | · | · | · | · | · | · | · | · |
1 | · | · | · | (13,9,0) | (17,9,1) | (20,10,2) | (23,10,4) | (25,12,5) | (27,13,7) | (29,13,10) | (30,17,10) | (31,20,11) | (32,22,13) | (33,23,16) | (34,23,20) | (34,27,21) | (34,30,23) | (34,32,26) | · |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | (34,34,34) |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{4,\lambda}(2,2;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{4,1}(2,2;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{4,\textbf{a}}(2,2;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | · | · | · | · | · | · | · | · | · | · | · | · | · | 1 | 1 | · | · | · | · |
1 | · | · | · | · | · | · | · | · | · | 1 | 2 | 3 | 5 | 6 | 5 | 3 | 2 | 1 | · |
2 | · | · | · | · | · | · | · | · | 1 | 4 | 7 | 11 | 14 | 14 | 11 | 7 | 4 | 1 | · |
3 | · | · | · | · | · | · | · | 1 | 4 | 10 | 17 | 23 | 25 | 23 | 17 | 10 | 4 | 1 | · |
4 | · | · | · | · | · | · | 1 | 4 | 10 | 21 | 31 | 36 | 36 | 31 | 21 | 10 | 4 | 1 | · |
5 | · | · | · | · | · | 1 | 4 | 10 | 21 | 36 | 45 | 48 | 45 | 36 | 21 | 10 | 4 | 1 | · |
6 | · | · | · | · | 1 | 4 | 10 | 21 | 36 | 50 | 57 | 57 | 50 | 36 | 21 | 10 | 4 | 1 | · |
7 | · | · | · | 1 | 4 | 10 | 21 | 36 | 50 | 62 | 66 | 62 | 50 | 36 | 21 | 10 | 4 | 1 | · |
8 | · | · | 1 | 4 | 10 | 21 | 36 | 50 | 62 | 71 | 71 | 62 | 50 | 36 | 21 | 10 | 4 | 1 | · |
9 | · | 1 | 4 | 10 | 21 | 36 | 50 | 62 | 71 | 76 | 71 | 62 | 50 | 36 | 21 | 10 | 4 | 1 | · |
10 | · | 2 | 7 | 17 | 31 | 45 | 57 | 66 | 71 | 71 | 66 | 57 | 45 | 31 | 17 | 7 | 2 | · | · |
11 | · | 3 | 11 | 23 | 36 | 48 | 57 | 62 | 62 | 62 | 57 | 48 | 36 | 23 | 11 | 3 | · | · | · |
12 | · | 5 | 14 | 25 | 36 | 45 | 50 | 50 | 50 | 50 | 45 | 36 | 25 | 14 | 5 | · | · | · | · |
13 | 1 | 6 | 14 | 23 | 31 | 36 | 36 | 36 | 36 | 36 | 31 | 23 | 14 | 6 | 1 | · | · | · | · |
14 | 1 | 5 | 11 | 17 | 21 | 21 | 21 | 21 | 21 | 21 | 17 | 11 | 5 | 1 | · | · | · | · | · |
15 | · | 3 | 7 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 7 | 3 | · | · | · | · | · | · | · |
16 | · | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | · | · | · | · | · | · | · | · |
17 | · | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | · | · | · | · | · | · | · | · | · |
18 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |