0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (2,0,0) | (6,1,0) | (10,1,1) | (13,3,1) | (16,4,2) | (19,4,4) | · | · | · | · | · | · | · | · | · | · | · | · | · |
1 | · | · | · | (13,9,0) | (17,9,1) | (20,10,2) | (23,10,4) | (25,12,5) | (27,13,7) | (29,13,10) | (30,17,10) | (31,20,11) | (32,22,13) | (33,23,16) | (34,23,20) | (34,27,21) | (34,30,23) | (34,32,26) | · |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | (34,34,34) |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{5,\lambda}(2,2;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{5,0}(2,2;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{5,\textbf{a}}(2,2;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 6 | 5 | 4 | 3 | 2 | 1 | 1 | · |
5 | 1 | 2 | 4 | 6 | 9 | 11 | 13 | 13 | 13 | 11 | 9 | 6 | 4 | 2 | 1 | · | · |
6 | 2 | 4 | 8 | 13 | 19 | 23 | 26 | 26 | 23 | 19 | 13 | 8 | 4 | 2 | · | · | · |
7 | 3 | 6 | 13 | 21 | 30 | 35 | 39 | 35 | 30 | 21 | 13 | 6 | 3 | · | · | · | · |
8 | 4 | 9 | 19 | 30 | 41 | 47 | 47 | 41 | 30 | 19 | 9 | 4 | · | · | · | · | · |
9 | 5 | 11 | 23 | 35 | 47 | 49 | 47 | 35 | 23 | 11 | 5 | · | · | · | · | · | · |
10 | 6 | 13 | 26 | 39 | 47 | 47 | 39 | 26 | 13 | 6 | · | · | · | · | · | · | · |
11 | 6 | 13 | 26 | 35 | 41 | 35 | 26 | 13 | 6 | · | · | · | · | · | · | · | · |
12 | 6 | 13 | 23 | 30 | 30 | 23 | 13 | 6 | · | · | · | · | · | · | · | · | · |
13 | 6 | 11 | 19 | 21 | 19 | 11 | 6 | · | · | · | · | · | · | · | · | · | · |
14 | 5 | 9 | 13 | 13 | 9 | 5 | · | · | · | · | · | · | · | · | · | · | · |
15 | 4 | 6 | 8 | 6 | 4 | · | · | · | · | · | · | · | · | · | · | · | · |
16 | 3 | 4 | 4 | 3 | · | · | · | · | · | · | · | · | · | · | · | · | · |
17 | 2 | 2 | 2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
18 | 1 | 1 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
19 | 1 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
20 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |