Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
(3,0,0) |
(8,1,0) |
(13,1,1) |
(17,3,1) |
(21,4,2) |
(25,4,4) |
(28,7,4) |
(31,9,5) |
(34,10,7) |
(37,10,10) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
(19,14,0) |
(24,14,1) |
(28,15,2) |
(32,15,4) |
(35,17,5) |
(38,18,7) |
(41,18,10) |
(43,21,11) |
(45,23,13) |
(47,24,16) |
(49,24,20) |
(50,29,20) |
(51,33,21) |
(52,36,23) |
(53,38,26) |
(54,39,30) |
(55,39,35) |
(55,44,36) |
(55,48,38) |
(55,51,41) |
(55,53,45) |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(55,55,55) |
\(\lambda=(50,49,48)\)
- Multiplicity: 1
- Dimension: 8
- Dominant: No
\(\lambda=(52,49,46)\)
- Multiplicity: 1
- Dimension: 64
- Dominant: No
\(\lambda=(53,51,43)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: No
\(\lambda=(54,53,40)\)
- Multiplicity: 1
- Dimension: 224
- Dominant: Yes
\(\lambda=(55,47,45)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: No
\(\lambda=(55,51,41)\)
- Multiplicity: 1
- Dimension: 440
- Dominant: Yes
\(\lambda=(54,49,44)\)
- Multiplicity: 2
- Dimension: 216
- Dominant: No
\(\lambda=(51,50,46)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(52,48,47)\)
- Multiplicity: 1
- Dimension: 35
- Dominant: No
\(\lambda=(53,50,44)\)
- Multiplicity: 1
- Dimension: 154
- Dominant: No
\(\lambda=(55,50,42)\)
- Multiplicity: 1
- Dimension: 405
- Dominant: No
\(\lambda=(54,52,41)\)
- Multiplicity: 1
- Dimension: 270
- Dominant: No
\(\lambda=(54,48,45)\)
- Multiplicity: 1
- Dimension: 154
- Dominant: No
\(\lambda=(51,49,47)\)
- Multiplicity: 1
- Dimension: 27
- Dominant: No
\(\lambda=(52,51,44)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(53,49,45)\)
- Multiplicity: 2
- Dimension: 125
- Dominant: No
\(\lambda=(55,49,43)\)
- Multiplicity: 1
- Dimension: 343
- Dominant: No
\(\lambda=(54,51,42)\)
- Multiplicity: 1
- Dimension: 280
- Dominant: No
\(\lambda=(54,47,46)\)
- Multiplicity: 1
- Dimension: 80
- Dominant: No
\(\lambda=(52,50,45)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(53,48,46)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(53,52,42)\)
- Multiplicity: 1
- Dimension: 143
- Dominant: No
\(\lambda=(55,48,44)\)
- Multiplicity: 2
- Dimension: 260
- Dominant: No
\(\lambda=(54,50,43)\)
- Multiplicity: 2
- Dimension: 260
- Dominant: No
\(\textbf{a}=(47,47,53)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,53,46)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,51,43)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,55,49)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,45,50)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,40,53)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,50,52)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,46,46)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,54,42)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,48,49)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,45,55)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,43,52)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,53,51)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,49,45)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,51,48)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,48,54)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,46,51)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,52,44)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,54,47)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,44,48)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,41,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,51,53)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,53,40)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,55,43)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,47,47)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,49,50)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,44,53)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,54,52)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,50,46)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,52,49)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,42,50)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,49,55)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,47,52)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,53,45)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,51,42)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,55,48)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,45,49)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,42,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,52,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,50,51)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,54,41)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,48,48)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,45,54)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,43,51)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,49,44)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,51,47)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,53,50)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,48,53)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,54,46)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,52,43)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,46,50)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,41,53)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,51,52)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,47,46)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,55,42)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,49,49)\)
- Multiplicity: 108
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,46,55)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,44,52)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,54,51)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,50,45)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,52,48)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,49,54)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,47,51)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,53,44)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,51,41)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,55,47)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,45,48)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,42,54)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,52,53)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,54,40)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,48,47)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,50,50)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,45,53)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,51,46)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,49,43)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,53,49)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,43,50)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,50,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,48,52)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,54,45)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,52,42)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,46,49)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,43,55)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(40,53,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,41,52)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,51,51)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,47,45)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,55,41)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,49,48)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,46,54)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,44,51)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,50,44)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,52,47)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,54,50)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,49,53)\)
- Multiplicity: 34
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,45,47)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,55,46)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,53,43)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,47,50)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,42,53)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,52,52)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,48,46)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,50,49)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,47,55)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,45,52)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,55,51)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,51,45)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,53,48)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,43,49)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,50,54)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,48,51)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,54,44)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,52,41)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,46,48)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,43,54)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,53,53)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,41,51)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,49,47)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,51,50)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,46,53)\)
- Multiplicity: 40
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,52,46)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,50,43)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,54,49)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,44,50)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,51,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,49,52)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,55,45)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,53,42)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,47,49)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,44,55)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,42,52)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,52,51)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,48,45)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,50,48)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,47,54)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,45,51)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,55,50)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,51,44)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,53,47)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,40,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,50,53)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,54,43)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,46,47)\)
- Multiplicity: 21
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,48,50)\)
- Multiplicity: 100
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,43,53)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,53,52)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,49,46)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,51,49)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,48,55)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,46,52)\)
- Multiplicity: 57
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,52,45)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,50,42)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,54,48)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,44,49)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,41,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,51,54)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,49,51)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,55,44)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,53,41)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,47,48)\)
- Multiplicity: 64
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,44,54)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(40,54,53)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,42,51)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,48,44)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,50,47)\)
- Multiplicity: 87
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,52,50)\)
- Multiplicity: 45
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{23,\lambda}(2,3;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{23,1}(2,3;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
46 |
· |
· |
· |
· |
· |
· |
· |
· |
47 |
· |
· |
· |
· |
· |
1
| 1
| · |
48 |
· |
· |
· |
1
| 1
| 1
| 2
| · |
49 |
· |
1
| 1
| 1
| 2
| 2
| 1
| · |
50 |
· |
· |
1
| 1
| 1
| 2
| 1
| · |
51 |
· |
· |
· |
1
| 1
| 1
| 1
| · |
52 |
· |
· |
· |
· |
1
| 1
| · |
· |
53 |
· |
· |
· |
· |
· |
1
| · |
· |
54 |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{23,\textbf{a}}(2,3;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!