0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (3,0,0) | (7,1,0) | (11,1,1) | (14,3,1) | (17,4,2) | (20,4,4) | (22,7,4) | (24,9,5) | (26,10,7) | (28,10,10) | · | · | · | · | · | · | · | · | · |
1 | · | · | · | · | (14,14,0) | (18,14,1) | (21,15,2) | (24,15,4) | (26,17,5) | (28,18,7) | (30,18,10) | (31,21,11) | (32,23,13) | (33,24,16) | (34,24,20) | (34,28,21) | (34,31,23) | (34,33,26) | (34,34,30) |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{4,\lambda}(2,3;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{4,1}(2,3;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
13 | 14 | 15 | |
---|---|---|---|
13 | · | · | · |
14 | · | 1 | · |
15 | · | · | · |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{4,\textbf{a}}(2,3;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | 1 | · |
1 | · | · | · | · | · | · | · | · | · | · | · | · | · | 1 | 1 | · |
2 | · | · | · | · | · | · | · | · | · | · | · | · | 1 | 1 | 1 | · |
3 | · | · | · | · | · | · | · | · | · | · | · | 1 | 1 | 1 | 1 | · |
4 | · | · | · | · | · | · | · | · | · | · | 1 | 1 | 1 | 1 | 1 | · |
5 | · | · | · | · | · | · | · | · | · | 1 | 1 | 1 | 1 | 1 | 1 | · |
6 | · | · | · | · | · | · | · | · | 1 | 1 | 1 | 1 | 1 | 1 | 1 | · |
7 | · | · | · | · | · | · | · | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | · |
8 | · | · | · | · | · | · | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | · |
9 | · | · | · | · | · | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | · |
10 | · | · | · | · | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | · |
11 | · | · | · | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | · |
12 | · | · | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | · |
13 | · | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | · |
14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | · |
15 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |