SyzygyData

Current Betti Table Entry:

\(n=2\)

\(d=5\)

\(b=3\)

\(p=6\)

\(q=1\)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 10 165 1260 5865 18360 39900 58695 49419 12870 2002 · · · · · · · · ·
1 · · · · 120 1575 9639 52650 172172 291720 338130 291720 192780 97920 37740 10710 2115 260 15
2 · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 (3,0,0) (7,1,0) (11,1,1) (14,3,1) (17,4,2) (20,4,4) (22,7,4) (24,9,5) (26,10,7) (28,10,10) · · · · · · · · ·
1 · · · · (14,14,0) (18,14,1) (21,15,2) (24,15,4) (26,17,5) (28,18,7) (30,18,10) (31,21,11) (32,23,13) (33,24,16) (34,24,20) (34,28,21) (34,31,23) (34,33,26) (34,34,30)
2 · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 1 3 14 25 35 43 48 57 43 12 · · · · · · · · ·
1 · · · · 1 5 22 68 72 70 69 66 58 51 40 30 18 4 1
2 · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 1 3 16 52 128 236 312 269 66 12 · · · · · · · · ·
1 · · · · 1 5 49 178 638 1121 1353 1239 894 513 233 83 23 4 1
2 · · · · · · · · · · · · · · · · · · ·

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{6,\lambda}(2,3;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{6,1}(2,3;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!

12 13 14 15 16 17 18 19 20 21 22
11 · · · · · · · · · · ·
12 · · 5 · · · · · · · ·
13 · 18 · · · · · · · · ·
14 · · · 1 1 2 2 2 1 1 ·
15 · · · 1 1 2 2 2 1 1 ·
16 · · · · · 1 1 1 · · ·
17 · · · · · 1 1 1 · · ·
18 · · · · · · · · · · ·

Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{6,\textbf{a}}(2,3;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 · · · · · · · · · · · · · 1 1 2 2 2 1 1 ·
3 · · · · · · · · · · · · 2 4 6 8 8 6 4 2 ·
4 · · · · · · · · · · · 2 6 12 16 19 16 12 6 2 ·
5 · · · · · · · · · · 2 6 16 26 32 32 26 16 6 2 ·
6 · · · · · · · · · 2 6 16 32 46 49 46 32 16 6 2 ·
7 · · · · · · · · 2 6 16 32 54 66 66 54 32 16 6 2 ·
8 · · · · · · · 2 6 16 32 54 75 85 75 54 32 16 6 2 ·
9 · · · · · · 2 6 16 32 54 75 95 95 75 54 32 16 6 2 ·
10 · · · · · 2 6 16 32 54 75 95 105 95 75 54 32 16 6 2 ·
11 · · · · 2 6 16 32 54 75 95 105 105 95 75 54 32 16 6 2 ·
12 · · · 2 6 16 32 54 75 95 110 128 110 95 75 54 32 16 6 2 ·
13 · · 2 6 16 32 54 75 95 105 128 128 105 95 75 54 32 16 6 2 ·
14 · 2 6 16 32 54 75 95 105 105 110 105 105 95 75 54 32 16 6 2 ·
15 1 4 12 26 46 66 85 95 95 95 95 95 95 85 66 46 26 12 4 1 ·
16 1 6 16 32 49 66 75 75 75 75 75 75 75 66 49 32 16 6 1 · ·
17 2 8 19 32 46 54 54 54 54 54 54 54 54 46 32 19 8 2 · · ·
18 2 8 16 26 32 32 32 32 32 32 32 32 32 26 16 8 2 · · · ·
19 2 6 12 16 16 16 16 16 16 16 16 16 16 12 6 2 · · · · ·
20 1 4 6 6 6 6 6 6 6 6 6 6 6 4 1 · · · · · ·
21 1 2 2 2 2 2 2 2 2 2 2 2 2 1 · · · · · · ·
22 · · · · · · · · · · · · · · · · · · · · ·