Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
0 |
(3,0,0) |
(7,1,0) |
(11,1,1) |
(14,3,1) |
(17,4,2) |
(20,4,4) |
(22,7,4) |
(24,9,5) |
(26,10,7) |
(28,10,10) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
(14,14,0) |
(18,14,1) |
(21,15,2) |
(24,15,4) |
(26,17,5) |
(28,18,7) |
(30,18,10) |
(31,21,11) |
(32,23,13) |
(33,24,16) |
(34,24,20) |
(34,28,21) |
(34,31,23) |
(34,33,26) |
(34,34,30) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(17,14,12)\)
- Multiplicity: 2
- Dimension: 42
- Dominant: No
\(\lambda=(22,12,9)\)
- Multiplicity: 1
- Dimension: 330
- Dominant: No
\(\lambda=(23,10,10)\)
- Multiplicity: 2
- Dimension: 105
- Dominant: No
\(\lambda=(16,16,11)\)
- Multiplicity: 2
- Dimension: 21
- Dominant: No
\(\lambda=(20,16,7)\)
- Multiplicity: 1
- Dimension: 375
- Dominant: No
\(\lambda=(21,14,8)\)
- Multiplicity: 1
- Dimension: 420
- Dominant: No
\(\lambda=(22,11,10)\)
- Multiplicity: 1
- Dimension: 168
- Dominant: No
\(\lambda=(16,15,12)\)
- Multiplicity: 2
- Dimension: 24
- Dominant: No
\(\lambda=(20,15,8)\)
- Multiplicity: 1
- Dimension: 336
- Dominant: No
\(\lambda=(21,13,9)\)
- Multiplicity: 1
- Dimension: 315
- Dominant: No
\(\lambda=(21,12,10)\)
- Multiplicity: 1
- Dimension: 195
- Dominant: No
\(\lambda=(26,10,7)\)
- Multiplicity: 1
- Dimension: 714
- Dominant: Yes
\(\lambda=(16,14,13)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(20,14,9)\)
- Multiplicity: 3
- Dimension: 273
- Dominant: No
\(\lambda=(19,16,8)\)
- Multiplicity: 1
- Dimension: 234
- Dominant: No
\(\lambda=(18,18,7)\)
- Multiplicity: 1
- Dimension: 78
- Dominant: No
\(\lambda=(18,17,8)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\lambda=(19,15,9)\)
- Multiplicity: 1
- Dimension: 210
- Dominant: No
\(\lambda=(20,13,10)\)
- Multiplicity: 3
- Dimension: 192
- Dominant: No
\(\lambda=(18,16,9)\)
- Multiplicity: 3
- Dimension: 132
- Dominant: No
\(\lambda=(19,14,10)\)
- Multiplicity: 3
- Dimension: 165
- Dominant: No
\(\lambda=(20,12,11)\)
- Multiplicity: 2
- Dimension: 99
- Dominant: No
\(\lambda=(24,12,7)\)
- Multiplicity: 1
- Dimension: 741
- Dominant: No
\(\lambda=(25,10,8)\)
- Multiplicity: 1
- Dimension: 456
- Dominant: No
\(\lambda=(15,14,14)\)
- Multiplicity: 1
- Dimension: 3
- Dominant: No
\(\lambda=(18,15,10)\)
- Multiplicity: 3
- Dimension: 120
- Dominant: No
\(\lambda=(19,13,11)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(24,11,8)\)
- Multiplicity: 1
- Dimension: 504
- Dominant: No
\(\lambda=(17,16,10)\)
- Multiplicity: 2
- Dimension: 63
- Dominant: No
\(\lambda=(18,14,11)\)
- Multiplicity: 3
- Dimension: 90
- Dominant: No
\(\lambda=(22,14,7)\)
- Multiplicity: 1
- Dimension: 612
- Dominant: No
\(\lambda=(19,12,12)\)
- Multiplicity: 2
- Dimension: 36
- Dominant: No
\(\lambda=(24,10,9)\)
- Multiplicity: 2
- Dimension: 255
- Dominant: No
\(\lambda=(23,12,8)\)
- Multiplicity: 1
- Dimension: 510
- Dominant: No
\(\lambda=(18,13,12)\)
- Multiplicity: 2
- Dimension: 48
- Dominant: No
\(\lambda=(23,11,9)\)
- Multiplicity: 1
- Dimension: 312
- Dominant: No
\(\lambda=(22,13,8)\)
- Multiplicity: 1
- Dimension: 480
- Dominant: No
\(\lambda=(17,15,11)\)
- Multiplicity: 1
- Dimension: 60
- Dominant: No
\(\textbf{a}=(24,8,11)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,18,10)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,12,17)\)
- Multiplicity: 157
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,9,23)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,11,10)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,21,9)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,15,16)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,12,22)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,24,8)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,14,9)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,18,15)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,8,16)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,15,21)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,17,8)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,21,14)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,11,15)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,8,21)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,10,8)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,20,7)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,14,14)\)
- Multiplicity: 223
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,11,20)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,13,7)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,17,13)\)
- Multiplicity: 165
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,7,14)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,8,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,14,19)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,20,12)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,10,13)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,11,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,7,19)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,17,18)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,23,11)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,13,12)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,16,11)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,26,10)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,10,18)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,7,24)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,9,11)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,19,10)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,13,17)\)
- Multiplicity: 165
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,10,23)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,12,10)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,22,9)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,16,16)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,13,22)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,25,8)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,15,9)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,19,15)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,9,16)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,18,8)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,8,9)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,22,14)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,12,15)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,9,21)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,11,8)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,21,7)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,15,14)\)
- Multiplicity: 223
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,12,20)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,14,7)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,18,13)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,8,14)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,9,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,15,19)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,21,12)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,11,13)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,8,19)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,18,18)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,24,11)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,14,12)\)
- Multiplicity: 157
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,7,12)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,17,11)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,11,18)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,8,24)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,10,11)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,20,10)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,14,17)\)
- Multiplicity: 157
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,11,23)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,13,10)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,23,9)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,17,16)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,7,17)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,14,22)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,26,8)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,16,9)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,20,15)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,10,16)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,7,22)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,19,8)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,9,9)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,13,15)\)
- Multiplicity: 206
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,10,21)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,12,8)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,22,7)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,16,14)\)
- Multiplicity: 198
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,13,20)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,15,7)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,19,13)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,9,14)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,10,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,16,19)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,22,12)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,12,13)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,9,19)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,25,11)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,15,12)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,8,12)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,18,11)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,12,18)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,9,24)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,11,11)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,21,10)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,15,17)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,12,23)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,14,10)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,24,9)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,18,16)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,8,17)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,7,10)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,17,9)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,21,15)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,11,16)\)
- Multiplicity: 132
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,8,22)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,20,8)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,10,9)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,14,15)\)
- Multiplicity: 223
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,11,21)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,13,8)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,23,7)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,17,14)\)
- Multiplicity: 157
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,7,15)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,14,20)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,16,7)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,20,13)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,10,14)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,7,20)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,17,19)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,23,12)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,13,13)\)
- Multiplicity: 165
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,10,19)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,16,12)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,7,25)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,13,18)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,9,12)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,19,11)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,10,24)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,12,11)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,22,10)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,16,17)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,13,23)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,15,10)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,25,9)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,19,16)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,9,17)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,8,10)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,18,9)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,12,16)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,9,22)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,21,8)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,11,9)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,15,15)\)
- Multiplicity: 206
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,12,21)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,14,8)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,24,7)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,18,14)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,8,15)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,15,20)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,17,7)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,21,13)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,11,14)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,8,20)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,10,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,24,12)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,14,13)\)
- Multiplicity: 198
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,11,19)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,17,12)\)
- Multiplicity: 157
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,7,13)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,8,25)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,14,18)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,20,11)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,10,12)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,11,24)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,13,11)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,23,10)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,17,17)\)
- Multiplicity: 43
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,7,18)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,16,10)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,26,9)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,20,16)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,10,17)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,7,23)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,9,10)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,19,9)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,13,16)\)
- Multiplicity: 198
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,10,22)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,22,8)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,12,9)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,16,15)\)
- Multiplicity: 174
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,13,21)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,15,8)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,25,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,19,14)\)
- Multiplicity: 66
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,9,15)\)
- Multiplicity: 35
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,16,20)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,18,7)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,22,13)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,12,14)\)
- Multiplicity: 157
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,9,20)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,11,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,15,13)\)
- Multiplicity: 206
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,12,19)\)
- Multiplicity: 98
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,18,12)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(22,8,13)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,9,25)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,15,18)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,21,11)\)
- Multiplicity: 46
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,11,12)\)
- Multiplicity: 68
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,12,24)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,14,11)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,24,10)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,18,17)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,8,18)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(25,7,11)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,17,10)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,11,17)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,8,23)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(23,10,10)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,20,9)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,14,16)\)
- Multiplicity: 198
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,11,22)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,23,8)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,13,9)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,17,15)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(20,7,16)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,14,21)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,26,7)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,16,8)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,20,14)\)
- Multiplicity: 31
- Dimension: 1
- Error: 0
\(\textbf{a}=(18,10,15)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(15,7,21)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(26,9,8)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,19,7)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,23,13)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,13,14)\)
- Multiplicity: 198
- Dimension: 1
- Error: 0
\(\textbf{a}=(13,10,20)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(24,12,7)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(14,16,13)\)
- Multiplicity: 198
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,7,26)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(11,13,19)\)
- Multiplicity: 86
- Dimension: 1
- Error: 0
\(\textbf{a}=(12,19,12)\)
- Multiplicity: 98
- Dimension: 1
- Error: 0
\(\textbf{a}=(21,9,13)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,10,25)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(9,16,18)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
\(\textbf{a}=(10,22,11)\)
- Multiplicity: 30
- Dimension: 1
- Error: 0
\(\textbf{a}=(19,12,12)\)
- Multiplicity: 98
- Dimension: 1
- Error: 0
\(\textbf{a}=(17,15,11)\)
- Multiplicity: 123
- Dimension: 1
- Error: 0
\(\textbf{a}=(8,25,10)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(7,19,17)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(16,9,18)\)
- Multiplicity: 42
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{8,\lambda}(2,3;5)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{8,0}(2,3;5)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
9 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
10 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
2
| 2
| 1
| 1
| · |
11 |
· |
· |
· |
· |
· |
· |
· |
· |
1
| 1
| 1
| · |
· |
· |
12 |
· |
· |
· |
· |
· |
2
| 2
| 1
| 1
| 1
| 1
| · |
· |
· |
13 |
· |
· |
· |
· |
2
| 1
| 3
| 1
| 1
| · |
· |
· |
· |
· |
14 |
· |
1
| 1
| 2
| 3
| 3
| 3
| 1
| 1
| · |
· |
· |
· |
· |
15 |
· |
· |
2
| 1
| 3
| 1
| 1
| · |
· |
· |
· |
· |
· |
· |
16 |
· |
· |
2
| 2
| 3
| 1
| 1
| · |
· |
· |
· |
· |
· |
· |
17 |
· |
· |
· |
· |
1
| · |
· |
· |
· |
· |
· |
· |
· |
· |
18 |
· |
· |
· |
· |
1
| · |
· |
· |
· |
· |
· |
· |
· |
· |
19 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{8,\textbf{a}}(2,3;5)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!