SyzygyData

Current Betti Table Entry:

\(n=2\)

\(d=6\)

\(b=0\)

\(p=24\)

\(q=2\)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 1 · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · 315 4950 41850 240120 1024650 3415500 9164925 20189400 36989865 56831850 73547100 80233200 73547100 56163240 35102025 17305200 6181777 1167911 172304 17890 945 · · · ·
2 · · · · · · · · · · · · · · · · 52852 143261 604934 473290 218295 69300 15525 2376 225 10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 (0,0,0) · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · (10,2,0) (15,2,1) (19,4,1) (23,5,2) (27,5,4) (30,8,4) (33,10,5) (36,11,7) (39,11,10) (41,15,10) (43,18,11) (45,20,13) (47,21,16) (49,21,20) (50,26,20) (51,30,21) (52,33,23) (53,35,26) (54,36,30) (55,36,35) (55,41,36) · · · ·
2 · · · · · · · · · · · · · · · · (45,45,18) (48,45,21) (50,46,24) (52,46,28) (53,48,31) (54,49,35) (55,49,40) (55,52,43) (55,54,47) (55,55,52)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 1 · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · 3 24 48 68 87 108 126 140 154 165 171 176 175 171 164 155 180 122 52 21 1 · · · ·
2 · · · · · · · · · · · · · · · · 46 61 100 86 65 51 37 18 3 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 1 · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · 3 28 179 808 2865 8263 19743 39685 67750 98722 123120 131367 119370 91464 57953 29087 10408 1482 239 21 1 · · · ·
2 · · · · · · · · · · · · · · · · 139 242 1705 1434 759 294 88 20 3 1

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{24,\lambda}(2,0;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{24,2}(2,0;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!

54 55 56
51 · · ·
52 · 1 ·
53 · 1 ·
54 · 1 ·
55 · · ·

Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{24,\textbf{a}}(2,0;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!

47 48 49 50 51 52 53 54 55 56
47 · · · · · · · 1 1 ·
48 · · · · · · 2 3 2 ·
49 · · · · · 3 5 5 3 ·
50 · · · · 3 6 7 6 3 ·
51 · · · 3 6 8 8 6 3 ·
52 · · 3 6 8 9 8 6 3 ·
53 · 2 5 7 8 8 7 5 2 ·
54 1 3 5 6 6 6 5 3 1 ·
55 1 2 3 3 3 3 2 1 · ·
56 · · · · · · · · · ·