SyzygyData

Current Betti Table Entry:

\(n=2\)

\(d=7\)

\(b=5\)

\(p=1\)

\(q=0\)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0 21 665 10164 99792 706552 3838296 16613520 ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · · · · · · · ·
1 · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? 8597496600 5870613840 3475246320 1781800020 788311524 299043360 96358416 26027848 5786088 1031184 141680 14091 903 28
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0 (5,0,0) (11,1,0) (17,1,1) (22,3,1) (27,4,2) (32,4,4) (36,7,4) ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · · · · · · · ·
1 · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? (75,47,30) (77,47,35) (78,52,36) (79,56,38) (80,59,41) (81,61,45) (82,62,50) (83,62,56) (83,68,57) (83,73,59) (83,77,62) (83,80,66) (83,82,71) (83,83,77)
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0 1 5 32 59 89 118 149 ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · · · · · · · ·
1 · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? 344 327 305 280 254 224 193 158 128 95 66 36 6 1
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0 1 5 48 317 1689 7350 26595 ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · · · · · · · ·
1 · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7052948 5038180 3153991 1731149 831516 348104 126234 39309 10385 2291 413 59 6 1
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{1,\lambda}(2,5;7)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{1,0}(2,5;7)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!

6 7 8 9 10 11 12
0 · · · · · · ·
1 · · · · · 1 ·
2 · · · · 1 · ·
3 · · · 1 · · ·
4 · · 1 · · · ·
5 · 1 · · · · ·
6 · · · · · · ·

Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{1,\textbf{a}}(2,5;7)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!

0 1 2 3 4 5 6 7 8 9 10 11 12
0 · 1 2 3 4 5 5 5 4 3 2 1 ·
1 1 3 5 7 9 10 10 9 7 5 3 1 ·
2 2 5 8 11 13 14 13 11 8 5 2 · ·
3 3 7 11 14 16 16 14 11 7 3 · · ·
4 4 9 13 16 17 16 13 9 4 · · · ·
5 5 10 14 16 16 14 10 5 · · · · ·
6 5 10 13 14 13 10 5 · · · · · ·
7 5 9 11 11 9 5 · · · · · · ·
8 4 7 8 7 4 · · · · · · · ·
9 3 5 5 3 · · · · · · · · ·
10 2 3 2 · · · · · · · · · ·
11 1 1 · · · · · · · · · · ·
12 · · · · · · · · · · · · ·