Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
(5,0,0) |
(11,1,0) |
(17,1,1) |
(22,3,1) |
(27,4,2) |
(32,4,4) |
(36,7,4) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(75,47,30) |
(77,47,35) |
(78,52,36) |
(79,56,38) |
(80,59,41) |
(81,61,45) |
(82,62,50) |
(83,62,56) |
(83,68,57) |
(83,73,59) |
(83,77,62) |
(83,80,66) |
(83,82,71) |
(83,83,77) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
1 |
5 |
32 |
59 |
89 |
118 |
149 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
344 |
327 |
305 |
280 |
254 |
224 |
193 |
158 |
128 |
95 |
66 |
36 |
6 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(83,83,77)\)
- Multiplicity: 1
- Dimension: 28
- Dominant: Yes
\(\textbf{a}=(83,83,77)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,83,81)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,81,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,79,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,80,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,82,78)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,82,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,81,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,83,78)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,81,79)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,83,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,82,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,80,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,82,79)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,83,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,79,81)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,81,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,83,79)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,80,81)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,82,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,78,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,83,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,81,81)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,79,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,77,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,82,81)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,80,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,78,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{33,\lambda}(2,5;7)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{33,1}(2,5;7)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
82 |
83 |
84 |
82 |
· |
· |
· |
83 |
· |
1
| · |
84 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{33,\textbf{a}}(2,5;7)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
77 |
· |
· |
· |
· |
· |
· |
1
| · |
78 |
· |
· |
· |
· |
· |
1
| 1
| · |
79 |
· |
· |
· |
· |
1
| 1
| 1
| · |
80 |
· |
· |
· |
1
| 1
| 1
| 1
| · |
81 |
· |
· |
1
| 1
| 1
| 1
| 1
| · |
82 |
· |
1
| 1
| 1
| 1
| 1
| 1
| · |
83 |
1
| 1
| 1
| 1
| 1
| 1
| 1
| · |
84 |
· |
· |
· |
· |
· |
· |
· |
· |