0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 28 | 903 | 14091 | 141680 | 1031184 | 5786088 | 26027848 | 96358416 | 299043360 | 788311524 | 1781800020 | 3475246320 | 5870613840 | 8597496600 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | · | · | · | · | · | · |
1 | · | · | · | · | · | · | · | · | · | · | · | · | · | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | 16613520 | 3838296 | 706552 | 99792 | 10164 | 665 | 21 |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | (6,0,0) | (12,1,0) | (18,1,1) | (23,3,1) | (28,4,2) | (33,4,4) | (37,7,4) | (41,9,5) | (45,10,7) | (49,10,10) | (52,14,10) | (55,17,11) | (58,19,13) | (61,20,16) | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | · | · | · | · | · | · |
1 | · | · | · | · | · | · | · | · | · | · | · | · | · | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | (82,68,52) | (83,68,58) | (83,73,60) | (83,77,63) | (83,80,67) | (83,82,72) | (83,83,78) |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 6 | 36 | 66 | 95 | 128 | 158 | 193 | 224 | 254 | 280 | 305 | 327 | 344 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | · | · | · | · | · | · |
1 | · | · | · | · | · | · | · | · | · | · | · | · | · | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | 149 | 118 | 89 | 59 | 32 | 5 | 1 |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 6 | 59 | 413 | 2291 | 10385 | 39309 | 126234 | 348104 | 831516 | 1731149 | 3153991 | 5038180 | 7052948 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | · | · | · | · | · | · |
1 | · | · | · | · | · | · | · | · | · | · | · | · | · | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | 26595 | 7350 | 1689 | 317 | 48 | 5 | 1 |
2 | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{1,\lambda}(2,6;7)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{1,0}(2,6;7)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{1,\textbf{a}}(2,6;7)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | · | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 5 | 4 | 3 | 2 | 1 | · |
1 | 1 | 3 | 5 | 7 | 9 | 11 | 12 | 11 | 9 | 7 | 5 | 3 | 1 | · |
2 | 2 | 5 | 8 | 11 | 14 | 16 | 16 | 14 | 11 | 8 | 5 | 2 | · | · |
3 | 3 | 7 | 11 | 15 | 18 | 19 | 18 | 15 | 11 | 7 | 3 | · | · | · |
4 | 4 | 9 | 14 | 18 | 20 | 20 | 18 | 14 | 9 | 4 | · | · | · | · |
5 | 5 | 11 | 16 | 19 | 20 | 19 | 16 | 11 | 5 | · | · | · | · | · |
6 | 6 | 12 | 16 | 18 | 18 | 16 | 12 | 6 | · | · | · | · | · | · |
7 | 6 | 11 | 14 | 15 | 14 | 11 | 6 | · | · | · | · | · | · | · |
8 | 5 | 9 | 11 | 11 | 9 | 5 | · | · | · | · | · | · | · | · |
9 | 4 | 7 | 8 | 7 | 4 | · | · | · | · | · | · | · | · | · |
10 | 3 | 5 | 5 | 3 | · | · | · | · | · | · | · | · | · | · |
11 | 2 | 3 | 2 | · | · | · | · | · | · | · | · | · | · | · |
12 | 1 | 1 | · | · | · | · | · | · | · | · | · | · | · | · |
13 | · | · | · | · | · | · | · | · | · | · | · | · | · | · |