Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
(6,0,0) |
(12,1,0) |
(18,1,1) |
(23,3,1) |
(28,4,2) |
(33,4,4) |
(37,7,4) |
(41,9,5) |
(45,10,7) |
(49,10,10) |
(52,14,10) |
(55,17,11) |
(58,19,13) |
(61,20,16) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(82,68,52) |
(83,68,58) |
(83,73,60) |
(83,77,63) |
(83,80,67) |
(83,82,72) |
(83,83,78) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
1 |
6 |
36 |
66 |
95 |
128 |
158 |
193 |
224 |
254 |
280 |
305 |
327 |
344 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
149 |
118 |
89 |
59 |
32 |
5 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(82,75,73)\)
- Multiplicity: 1
- Dimension: 132
- Dominant: No
\(\lambda=(81,77,72)\)
- Multiplicity: 2
- Dimension: 165
- Dominant: No
\(\lambda=(80,79,71)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: No
\(\lambda=(80,78,72)\)
- Multiplicity: 2
- Dimension: 105
- Dominant: No
\(\lambda=(82,82,66)\)
- Multiplicity: 1
- Dimension: 153
- Dominant: Yes
\(\lambda=(83,80,67)\)
- Multiplicity: 1
- Dimension: 504
- Dominant: Yes
\(\lambda=(82,74,74)\)
- Multiplicity: 1
- Dimension: 45
- Dominant: No
\(\lambda=(81,76,73)\)
- Multiplicity: 2
- Dimension: 120
- Dominant: No
\(\lambda=(80,77,73)\)
- Multiplicity: 1
- Dimension: 90
- Dominant: No
\(\lambda=(82,81,67)\)
- Multiplicity: 1
- Dimension: 255
- Dominant: No
\(\lambda=(83,79,68)\)
- Multiplicity: 1
- Dimension: 510
- Dominant: No
\(\lambda=(81,75,74)\)
- Multiplicity: 1
- Dimension: 63
- Dominant: No
\(\lambda=(79,78,73)\)
- Multiplicity: 1
- Dimension: 48
- Dominant: No
\(\lambda=(80,76,74)\)
- Multiplicity: 2
- Dimension: 60
- Dominant: No
\(\lambda=(82,80,68)\)
- Multiplicity: 2
- Dimension: 312
- Dominant: No
\(\lambda=(83,78,69)\)
- Multiplicity: 2
- Dimension: 480
- Dominant: No
\(\lambda=(79,77,74)\)
- Multiplicity: 1
- Dimension: 42
- Dominant: No
\(\lambda=(82,79,69)\)
- Multiplicity: 2
- Dimension: 330
- Dominant: No
\(\lambda=(83,77,70)\)
- Multiplicity: 2
- Dimension: 420
- Dominant: No
\(\lambda=(78,78,74)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(79,76,75)\)
- Multiplicity: 1
- Dimension: 24
- Dominant: No
\(\lambda=(82,78,70)\)
- Multiplicity: 3
- Dimension: 315
- Dominant: No
\(\lambda=(83,76,71)\)
- Multiplicity: 2
- Dimension: 336
- Dominant: No
\(\lambda=(81,80,69)\)
- Multiplicity: 1
- Dimension: 168
- Dominant: No
\(\lambda=(83,75,72)\)
- Multiplicity: 2
- Dimension: 234
- Dominant: No
\(\lambda=(82,77,71)\)
- Multiplicity: 2
- Dimension: 273
- Dominant: No
\(\lambda=(81,79,70)\)
- Multiplicity: 1
- Dimension: 195
- Dominant: No
\(\lambda=(78,76,76)\)
- Multiplicity: 1
- Dimension: 6
- Dominant: No
\(\lambda=(83,74,73)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\lambda=(82,76,72)\)
- Multiplicity: 3
- Dimension: 210
- Dominant: No
\(\lambda=(81,78,71)\)
- Multiplicity: 2
- Dimension: 192
- Dominant: No
\(\lambda=(80,80,70)\)
- Multiplicity: 1
- Dimension: 66
- Dominant: No
\(\textbf{a}=(82,75,73)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,79,79)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,69,80)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,78,72)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,82,78)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,72,79)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,81,71)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,75,78)\)
- Multiplicity: 162
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,78,77)\)
- Multiplicity: 162
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,71,77)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,81,76)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,77,70)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,75,83)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,74,76)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,80,69)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,78,82)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,68,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,77,75)\)
- Multiplicity: 162
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,83,68)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(68,81,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,71,82)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,80,74)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,74,81)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,73,74)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,83,73)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,77,80)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,67,81)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,82,66)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,76,73)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,80,79)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,70,80)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,79,72)\)
- Multiplicity: 78
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,83,78)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,73,79)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,82,71)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,76,78)\)
- Multiplicity: 173
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,79,77)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,69,78)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,72,77)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,82,76)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,78,70)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,76,83)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,75,76)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,81,69)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,79,82)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,69,83)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,78,75)\)
- Multiplicity: 162
- Dimension: 1
- Error: 0
\(\textbf{a}=(67,82,81)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,72,82)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,81,74)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,75,81)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,74,74)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,80,67)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,78,80)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,68,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,77,73)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,81,79)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,71,80)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,80,72)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,74,79)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,83,71)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,77,78)\)
- Multiplicity: 162
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,76,71)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,80,77)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,70,78)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,73,77)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,83,76)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,79,70)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,77,83)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,76,76)\)
- Multiplicity: 173
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,82,69)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(68,80,82)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,70,83)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,79,75)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,73,82)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,72,75)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,82,74)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,76,81)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,66,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,75,74)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,81,67)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,79,80)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,69,81)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,78,73)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,82,79)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,72,80)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,81,72)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,75,79)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,78,78)\)
- Multiplicity: 140
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,68,79)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,77,71)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,81,77)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,71,78)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,78,83)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,74,77)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,80,70)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,77,76)\)
- Multiplicity: 181
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,83,69)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(67,81,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,71,83)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,80,75)\)
- Multiplicity: 110
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,74,82)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,73,75)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,83,74)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,79,68)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,77,81)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,67,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,76,74)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,82,67)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,80,80)\)
- Multiplicity: 33
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,70,81)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,79,73)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(68,83,79)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,73,80)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,82,72)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,76,79)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,75,72)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,79,78)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,69,79)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,78,71)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,82,77)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,72,78)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(68,79,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,75,77)\)
- Multiplicity: 162
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,81,70)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,78,76)\)
- Multiplicity: 173
- Dimension: 1
- Error: 0
\(\textbf{a}=(66,82,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,72,83)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,71,76)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,81,75)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,75,82)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,74,75)\)
- Multiplicity: 71
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,80,68)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,78,81)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,68,82)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,77,74)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,83,67)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,81,80)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,71,81)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,80,73)\)
- Multiplicity: 91
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,74,80)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,83,72)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,77,79)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,67,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,76,72)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,80,78)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,70,79)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,79,71)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,83,77)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,73,78)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(67,80,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,76,77)\)
- Multiplicity: 181
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,82,70)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,79,76)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,73,83)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,72,76)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,82,75)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,78,69)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,76,82)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,75,75)\)
- Multiplicity: 110
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,81,68)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(70,79,81)\)
- Multiplicity: 28
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,69,82)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,78,74)\)
- Multiplicity: 140
- Dimension: 1
- Error: 0
\(\textbf{a}=(68,82,80)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,72,81)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,81,73)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,75,80)\)
- Multiplicity: 110
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,74,73)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,78,79)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,68,80)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,77,72)\)
- Multiplicity: 54
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,81,78)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,71,79)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,80,71)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,74,78)\)
- Multiplicity: 140
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,77,77)\)
- Multiplicity: 181
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,83,70)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,70,77)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,80,76)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,74,83)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,73,76)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,83,75)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,79,69)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,77,82)\)
- Multiplicity: 25
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,67,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,76,75)\)
- Multiplicity: 143
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,82,68)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(69,80,81)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,70,82)\)
- Multiplicity: 19
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,79,74)\)
- Multiplicity: 129
- Dimension: 1
- Error: 0
\(\textbf{a}=(67,83,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,73,81)\)
- Multiplicity: 65
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,82,73)\)
- Multiplicity: 36
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,76,80)\)
- Multiplicity: 106
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{31,\lambda}(2,6;7)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{31,1}(2,6;7)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
73 |
· |
· |
· |
· |
· |
· |
· |
· |
74 |
· |
· |
· |
· |
· |
1
| 1
| · |
75 |
· |
· |
· |
· |
1
| 1
| 2
| · |
76 |
· |
1
| 1
| 2
| 2
| 3
| 2
| · |
77 |
· |
· |
1
| 1
| 2
| 2
| 2
| · |
78 |
· |
1
| 1
| 2
| 2
| 3
| 2
| · |
79 |
· |
· |
· |
1
| 1
| 2
| 1
| · |
80 |
· |
· |
· |
1
| 1
| 2
| 1
| · |
81 |
· |
· |
· |
· |
· |
1
| · |
· |
82 |
· |
· |
· |
· |
· |
1
| · |
· |
83 |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{31,\textbf{a}}(2,6;7)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!