Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
(6,0,0) |
(12,1,0) |
(18,1,1) |
(23,3,1) |
(28,4,2) |
(33,4,4) |
(37,7,4) |
(41,9,5) |
(45,10,7) |
(49,10,10) |
(52,14,10) |
(55,17,11) |
(58,19,13) |
(61,20,16) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(82,68,52) |
(83,68,58) |
(83,73,60) |
(83,77,63) |
(83,80,67) |
(83,82,72) |
(83,83,78) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
1 |
6 |
36 |
66 |
95 |
128 |
158 |
193 |
224 |
254 |
280 |
305 |
327 |
344 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
149 |
118 |
89 |
59 |
32 |
5 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(83,78,76)\)
- Multiplicity: 1
- Dimension: 81
- Dominant: No
\(\lambda=(83,79,75)\)
- Multiplicity: 1
- Dimension: 125
- Dominant: No
\(\lambda=(83,82,72)\)
- Multiplicity: 1
- Dimension: 143
- Dominant: Yes
\(\lambda=(83,81,73)\)
- Multiplicity: 1
- Dimension: 162
- Dominant: No
\(\lambda=(83,80,74)\)
- Multiplicity: 1
- Dimension: 154
- Dominant: No
\(\textbf{a}=(77,78,82)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,82,80)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,80,77)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,82,72)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,76,79)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,77,83)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,81,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,83,76)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,81,73)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,79,78)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,75,80)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,80,82)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,74,81)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,80,74)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,82,77)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,78,79)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,79,83)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,73,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,83,81)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,83,73)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,79,75)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,81,78)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,77,80)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,72,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,82,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,76,81)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,78,76)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,82,74)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,80,79)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,81,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,75,82)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,79,80)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,77,77)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,81,75)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,83,78)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,74,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,78,81)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,80,76)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,76,78)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,82,79)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,77,82)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,81,80)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,79,77)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,83,75)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,75,79)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,76,83)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,80,81)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,82,76)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,78,78)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,74,80)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,79,82)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,73,81)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,83,80)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,83,72)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,81,77)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,77,79)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,78,83)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,72,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,82,81)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,82,73)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,80,78)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,76,80)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,81,82)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,75,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,81,74)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,83,77)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,79,79)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,80,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,74,82)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,78,80)\)
- Multiplicity: 16
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,80,75)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,82,78)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,73,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,83,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,77,81)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,79,76)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,83,74)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,81,79)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,82,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,76,82)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,80,80)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,78,77)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,82,75)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,75,83)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,79,81)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,81,76)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,77,78)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,83,79)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{32,\lambda}(2,6;7)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{32,1}(2,6;7)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
82 |
83 |
84 |
77 |
· |
· |
· |
78 |
· |
1
| · |
79 |
· |
1
| · |
80 |
· |
1
| · |
81 |
· |
1
| · |
82 |
· |
1
| · |
83 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{32,\textbf{a}}(2,6;7)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!