Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
(1,0,0) |
(6,1,0) |
(11,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(14,5,0) |
(19,5,1) |
(23,6,2) |
(27,6,4) |
(30,9,4) |
(33,11,5) |
(36,12,7) |
(39,12,10) |
(41,16,10) |
(43,19,11) |
(45,21,13) |
(47,22,16) |
(49,22,20) |
(50,27,20) |
(51,31,21) |
(52,34,23) |
(53,36,26) |
(54,37,30) |
(55,37,35) |
(55,42,36) |
(55,46,38) |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(51,51,31) |
(53,51,35) |
(54,52,39) |
(55,52,44) |
(55,54,48) |
(55,55,53) |
\(\lambda=(50,49,46)\)
- Multiplicity: 1
- Dimension: 24
- Dominant: No
\(\lambda=(53,51,41)\)
- Multiplicity: 1
- Dimension: 231
- Dominant: No
\(\lambda=(54,49,42)\)
- Multiplicity: 2
- Dimension: 336
- Dominant: No
\(\lambda=(50,48,47)\)
- Multiplicity: 1
- Dimension: 15
- Dominant: No
\(\lambda=(53,50,42)\)
- Multiplicity: 2
- Dimension: 234
- Dominant: No
\(\lambda=(54,48,43)\)
- Multiplicity: 2
- Dimension: 273
- Dominant: No
\(\lambda=(52,52,41)\)
- Multiplicity: 1
- Dimension: 78
- Dominant: No
\(\lambda=(53,49,43)\)
- Multiplicity: 2
- Dimension: 210
- Dominant: No
\(\lambda=(54,47,44)\)
- Multiplicity: 1
- Dimension: 192
- Dominant: No
\(\lambda=(52,51,42)\)
- Multiplicity: 1
- Dimension: 120
- Dominant: No
\(\lambda=(49,48,48)\)
- Multiplicity: 1
- Dimension: 3
- Dominant: No
\(\lambda=(53,48,44)\)
- Multiplicity: 3
- Dimension: 165
- Dominant: No
\(\lambda=(54,46,45)\)
- Multiplicity: 1
- Dimension: 99
- Dominant: No
\(\lambda=(52,50,43)\)
- Multiplicity: 2
- Dimension: 132
- Dominant: No
\(\lambda=(53,47,45)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(52,49,44)\)
- Multiplicity: 2
- Dimension: 120
- Dominant: No
\(\lambda=(54,52,39)\)
- Multiplicity: 1
- Dimension: 357
- Dominant: Yes
\(\lambda=(53,46,46)\)
- Multiplicity: 1
- Dimension: 36
- Dominant: No
\(\lambda=(52,48,45)\)
- Multiplicity: 2
- Dimension: 90
- Dominant: No
\(\lambda=(51,50,44)\)
- Multiplicity: 1
- Dimension: 63
- Dominant: No
\(\lambda=(54,51,40)\)
- Multiplicity: 1
- Dimension: 384
- Dominant: No
\(\lambda=(52,47,46)\)
- Multiplicity: 1
- Dimension: 48
- Dominant: No
\(\lambda=(51,49,45)\)
- Multiplicity: 1
- Dimension: 60
- Dominant: No
\(\lambda=(53,52,40)\)
- Multiplicity: 1
- Dimension: 195
- Dominant: No
\(\lambda=(54,50,41)\)
- Multiplicity: 1
- Dimension: 375
- Dominant: No
\(\lambda=(51,48,46)\)
- Multiplicity: 2
- Dimension: 42
- Dominant: No
\(\lambda=(50,50,45)\)
- Multiplicity: 1
- Dimension: 21
- Dominant: No
\(\textbf{a}=(42,49,54)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,47,51)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,53,44)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,51,41)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,45,48)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,42,54)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(40,52,53)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,40,51)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,50,50)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,54,40)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,48,47)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,45,53)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,49,43)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,51,46)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,53,49)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,43,50)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,48,52)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,54,45)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,52,42)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,46,49)\)
- Multiplicity: 96
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,41,52)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,51,51)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,47,45)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,49,48)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,46,54)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,44,51)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,54,50)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,50,44)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,52,47)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,39,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,49,53)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,51,40)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,53,43)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,45,47)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,47,50)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,42,53)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,52,52)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,48,46)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,54,39)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,50,49)\)
- Multiplicity: 96
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,45,52)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,51,45)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,49,42)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,53,48)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,43,49)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,50,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,48,51)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,54,44)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,52,41)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,46,48)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,43,54)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(39,53,53)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,41,51)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,51,50)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,47,44)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,49,47)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,46,53)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,50,43)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,52,46)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,54,49)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,44,50)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,39,53)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,49,52)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,45,46)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,53,42)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,47,49)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,42,52)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,52,51)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,48,45)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,50,48)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,47,54)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,45,51)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,51,44)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,53,47)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,43,48)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,40,54)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,50,53)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,54,43)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,52,40)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,46,47)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,48,50)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,43,53)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(40,53,52)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,49,46)\)
- Multiplicity: 96
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,51,49)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,41,50)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,46,52)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,52,45)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,50,42)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,54,48)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,44,49)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(40,51,54)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,39,52)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,49,51)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,53,41)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,47,48)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,44,54)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,42,51)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,52,50)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,48,44)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,50,47)\)
- Multiplicity: 109
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,47,53)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,51,43)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,53,46)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,45,50)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,40,53)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,50,52)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,46,46)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,52,39)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,54,42)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,48,49)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,43,52)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,53,51)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,49,45)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,51,48)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(43,48,54)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,46,51)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,52,44)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,50,41)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,54,47)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,44,48)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,41,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(41,51,53)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,49,50)\)
- Multiplicity: 96
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,53,40)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,47,47)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,44,53)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(39,54,52)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,50,46)\)
- Multiplicity: 96
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,48,43)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,52,49)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,42,50)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,47,52)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,53,45)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,51,42)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,45,49)\)
- Multiplicity: 67
- Dimension: 1
- Error: 0
\(\textbf{a}=(39,52,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,40,52)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,50,51)\)
- Multiplicity: 50
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,46,45)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,54,41)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,48,48)\)
- Multiplicity: 128
- Dimension: 1
- Error: 0
\(\textbf{a}=(46,45,54)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,43,51)\)
- Multiplicity: 32
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,53,50)\)
- Multiplicity: 12
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,49,44)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,51,47)\)
- Multiplicity: 84
- Dimension: 1
- Error: 0
\(\textbf{a}=(44,48,53)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,52,43)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,54,46)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,44,47)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,46,50)\)
- Multiplicity: 96
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,41,53)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(42,51,52)\)
- Multiplicity: 18
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,47,46)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,53,39)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(47,49,49)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,44,52)\)
- Multiplicity: 41
- Dimension: 1
- Error: 0
\(\textbf{a}=(40,54,51)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,50,45)\)
- Multiplicity: 74
- Dimension: 1
- Error: 0
\(\textbf{a}=(45,52,48)\)
- Multiplicity: 51
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,42,49)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{22,\lambda}(2,1;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{22,2}(2,1;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
45 |
· |
· |
· |
· |
· |
· |
· |
· |
46 |
· |
· |
· |
· |
· |
1
| 1
| · |
47 |
· |
· |
· |
· |
1
| 1
| 1
| · |
48 |
· |
1
| 1
| 2
| 2
| 3
| 2
| · |
49 |
· |
· |
1
| 1
| 2
| 2
| 2
| · |
50 |
· |
· |
1
| 1
| 2
| 2
| 1
| · |
51 |
· |
· |
· |
· |
1
| 1
| 1
| · |
52 |
· |
· |
· |
· |
1
| 1
| 1
| · |
53 |
· |
· |
· |
· |
· |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{22,\textbf{a}}(2,1;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!