Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
0 |
(1,0,0) |
(6,1,0) |
(11,1,1) |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
(14,5,0) |
(19,5,1) |
(23,6,2) |
(27,6,4) |
(30,9,4) |
(33,11,5) |
(36,12,7) |
(39,12,10) |
(41,16,10) |
(43,19,11) |
(45,21,13) |
(47,22,16) |
(49,22,20) |
(50,27,20) |
(51,31,21) |
(52,34,23) |
(53,36,26) |
(54,37,30) |
(55,37,35) |
(55,42,36) |
(55,46,38) |
· |
· |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(51,51,31) |
(53,51,35) |
(54,52,39) |
(55,52,44) |
(55,54,48) |
(55,55,53) |
\(\lambda=(55,53,49)\)
- Multiplicity: 1
- Dimension: 60
- Dominant: No
\(\lambda=(55,54,48)\)
- Multiplicity: 1
- Dimension: 63
- Dominant: Yes
\(\textbf{a}=(48,54,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,48,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,54,51)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,52,52)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,50,53)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,49,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,55,51)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,53,52)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,51,53)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,48,55)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,50,54)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,54,48)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,54,52)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,52,53)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,49,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,51,54)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,53,53)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,53,49)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,55,48)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,55,52)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,50,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,52,54)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,54,53)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,54,49)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,52,50)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(51,51,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,53,54)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,55,53)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,51,51)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,53,50)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,55,49)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(50,52,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,54,54)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,52,51)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,54,50)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,50,52)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(49,53,55)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(48,55,54)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(53,53,51)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(52,55,50)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(54,51,52)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(55,49,53)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{24,\lambda}(2,1;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{24,2}(2,1;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
54 |
55 |
56 |
52 |
· |
· |
· |
53 |
· |
1
| · |
54 |
· |
1
| · |
55 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{24,\textbf{a}}(2,1;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!
|
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
48 |
· |
· |
· |
· |
· |
· |
1
| 1
| · |
49 |
· |
· |
· |
· |
· |
2
| 3
| 2
| · |
50 |
· |
· |
· |
· |
2
| 4
| 4
| 2
| · |
51 |
· |
· |
· |
2
| 4
| 5
| 4
| 2
| · |
52 |
· |
· |
2
| 4
| 5
| 5
| 4
| 2
| · |
53 |
· |
2
| 4
| 5
| 5
| 5
| 4
| 2
| · |
54 |
1
| 3
| 4
| 4
| 4
| 4
| 3
| 1
| · |
55 |
1
| 2
| 2
| 2
| 2
| 2
| 1
| · |
· |
56 |
· |
· |
· |
· |
· |
· |
· |
· |
· |