SyzygyData

Current Betti Table Entry:

\(n=2\)

\(d=6\)

\(b=1\)

\(p=24\)

\(q=2\)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 3 48 231 · · · · · · · · · · · · · · · · · · · · · · ·
1 · · 1050 22350 168360 827310 3020820 8671575 20189400 38864595 62626470 85136340 98062800 95834100 79341720 55383195 32303040 15502575 5958150 1738110 333960 27498 1470 · · ·
2 · · · · · · · · · · · · · · · · · · · · 11628 16170 5775 1128 123 6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 (1,0,0) (6,1,0) (11,1,1) · · · · · · · · · · · · · · · · · · · · · · ·
1 · · (14,5,0) (19,5,1) (23,6,2) (27,6,4) (30,9,4) (33,11,5) (36,12,7) (39,12,10) (41,16,10) (43,19,11) (45,21,13) (47,22,16) (49,22,20) (50,27,20) (51,31,21) (52,34,23) (53,36,26) (54,37,30) (55,37,35) (55,42,36) (55,46,38) · · ·
2 · · · · · · · · · · · · · · · · · · · · (51,51,31) (53,51,35) (54,52,39) (55,52,44) (55,54,48) (55,55,53)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 1 1 3 · · · · · · · · · · · · · · · · · · · · · · ·
1 · · 3 43 68 89 109 126 142 155 165 172 177 176 172 166 155 142 127 108 86 36 3 · · ·
2 · · · · · · · · · · · · · · · · · · · · 39 36 27 11 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 1 1 3 · · · · · · · · · · · · · · · · · · · · · · ·
1 · · 3 84 526 2206 7064 18235 39025 70395 108153 142432 161307 157237 131701 94338 57286 29041 11949 3757 750 48 3 · · ·
2 · · · · · · · · · · · · · · · · · · · · 58 82 37 11 2 1

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{24,\lambda}(2,1;6)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{24,2}(2,1;6)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!

54 55 56
52 · · ·
53 · 1 ·
54 · 1 ·
55 · · ·

Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{24,\textbf{a}}(2,1;6)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!

48 49 50 51 52 53 54 55 56
48 · · · · · · 1 1 ·
49 · · · · · 2 3 2 ·
50 · · · · 2 4 4 2 ·
51 · · · 2 4 5 4 2 ·
52 · · 2 4 5 5 4 2 ·
53 · 2 4 5 5 5 4 2 ·
54 1 3 4 4 4 4 3 1 ·
55 1 2 2 2 2 2 1 · ·
56 · · · · · · · · ·