Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
(4,0,0) |
(10,1,0) |
(16,1,1) |
(21,3,1) |
(26,4,2) |
(31,4,4) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(63,30,16) |
(66,30,20) |
(68,34,21) |
(70,37,23) |
(72,39,26) |
(74,40,30) |
(76,40,35) |
(77,46,35) |
(78,51,36) |
(79,55,38) |
(80,58,41) |
(81,60,45) |
(82,61,50) |
(83,61,56) |
(83,67,57) |
(83,72,59) |
(83,76,62) |
(83,79,66) |
(83,81,71) |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
(83,83,83) |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
0 |
1 |
4 |
27 |
55 |
82 |
109 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
362 |
372 |
378 |
377 |
371 |
363 |
348 |
333 |
310 |
284 |
256 |
227 |
197 |
162 |
130 |
99 |
67 |
34 |
3 |
· |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
\(\lambda=(83,77,75)\)
- Multiplicity: 1
- Dimension: 105
- Dominant: No
\(\lambda=(83,79,73)\)
- Multiplicity: 1
- Dimension: 210
- Dominant: No
\(\lambda=(83,81,71)\)
- Multiplicity: 1
- Dimension: 231
- Dominant: Yes
\(\textbf{a}=(80,80,75)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,82,78)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,74,82)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,75,78)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,81,71)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,83,74)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,77,81)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,78,77)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,80,80)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,75,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,81,76)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,79,73)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,83,79)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,73,80)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,82,72)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,76,79)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,78,82)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,79,78)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,77,75)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,81,81)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,71,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,82,77)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,80,74)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,74,81)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,79,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,75,77)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,83,73)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,77,80)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,72,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,82,82)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,78,76)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,80,79)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,81,75)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,83,78)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,73,79)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,75,82)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,76,78)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,82,71)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,78,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,79,77)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,81,80)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,71,81)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,76,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,82,76)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,80,73)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,74,80)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,79,82)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,83,72)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,77,79)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,78,75)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,80,78)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,82,81)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,72,82)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,83,77)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,81,74)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,75,81)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,80,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,76,77)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,78,80)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,73,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,79,76)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,81,79)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,80,72)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,82,75)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,74,79)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,76,82)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,77,78)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,83,71)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,79,81)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,80,77)\)
- Multiplicity: 10
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,78,74)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,82,80)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,72,81)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(75,77,83)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,83,76)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,81,73)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,75,80)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(73,80,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,76,76)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,78,79)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,79,75)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,81,78)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,83,81)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,73,82)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,74,78)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,82,74)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,76,81)\)
- Multiplicity: 8
- Dimension: 1
- Error: 0
\(\textbf{a}=(71,81,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,77,77)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,79,80)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(78,74,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,80,76)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,82,79)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(83,72,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,83,75)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,81,72)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,75,79)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(76,77,82)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,78,78)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,80,81)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,81,77)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,79,74)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,83,80)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,73,81)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(74,78,83)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(80,82,73)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(79,76,80)\)
- Multiplicity: 9
- Dimension: 1
- Error: 0
\(\textbf{a}=(81,71,83)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(72,81,82)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(82,77,76)\)
- Multiplicity: 6
- Dimension: 1
- Error: 0
\(\textbf{a}=(77,79,79)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{32,\lambda}(2,4;7)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{32,1}(2,4;7)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
|
82 |
83 |
84 |
76 |
· |
· |
· |
77 |
· |
1
| · |
78 |
· |
· |
· |
79 |
· |
1
| · |
80 |
· |
· |
· |
81 |
· |
1
| · |
82 |
· |
· |
· |
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{32,\textbf{a}}(2,4;7)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!