SyzygyData

Current Betti Table Entry:

\(n=2\)

\(d=8\)

\(b=6\)

\(p=1\)

\(q=0\)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
0 28 1140 22596 290444 2720760 19789224 116257960 566544888 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · · · · · · · · · ·
1 · · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2072120979936 1188443771040 609047053216 278236489440 112899806292 40486976348 12747259980 3493693476 824337800 165029592 27490008 3708040 389172 29820 1484 36
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
0 (6,0,0) (13,1,0) (20,1,1) (26,3,1) (32,4,2) (38,4,4) (43,7,4) (48,9,5) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · · · · · · · · · ·
1 · · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (110,70,50) (112,70,56) (113,76,57) (114,81,59) (115,85,62) (116,88,66) (117,90,71) (118,91,77) (119,91,84) (119,98,85) (119,104,87) (119,109,90) (119,113,94) (119,116,99) (119,118,105) (119,119,112)
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
0 1 6 43 81 121 166 212 262 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · · · · · · · · · ·
1 · · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 635 601 564 519 472 425 377 326 274 224 175 129 86 48 7 1
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
0 1 6 72 624 4344 25006 121362 504382 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · · · · · · · · · · · · · ·
1 · · · · · · · ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 912602873 547932476 296296544 144095569 62864456 24514745 8504414 2608474 701858 164018 32863 5549 772 86 7 1
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{1,\lambda}(2,6;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{1,0}(2,6;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!

7 8 9 10 11 12 13 14
0 · · · · · · · ·
1 · · · · · · 1 ·
2 · · · · · 1 · ·
3 · · · · 1 · · ·
4 · · · 1 · · · ·
5 · · 1 · · · · ·
6 · 1 · · · · · ·
7 · · · · · · · ·

Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{1,\textbf{a}}(2,6;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 · 1 2 3 4 5 6 6 6 5 4 3 2 1 ·
1 1 3 5 7 9 11 12 12 11 9 7 5 3 1 ·
2 2 5 8 11 14 16 17 16 14 11 8 5 2 · ·
3 3 7 11 15 18 20 20 18 15 11 7 3 · · ·
4 4 9 14 18 21 22 21 18 14 9 4 · · · ·
5 5 11 16 20 22 22 20 16 11 5 · · · · ·
6 6 12 17 20 21 20 17 12 6 · · · · · ·
7 6 12 16 18 18 16 12 6 · · · · · · ·
8 6 11 14 15 14 11 6 · · · · · · · ·
9 5 9 11 11 9 5 · · · · · · · · ·
10 4 7 8 7 4 · · · · · · · · · ·
11 3 5 5 3 · · · · · · · · · · ·
12 2 3 2 · · · · · · · · · · · ·
13 1 1 · · · · · · · · · · · · ·
14 · · · · · · · · · · · · · · ·