Current Betti Table Entry:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
(6,0,0) |
(13,1,0) |
(20,1,1) |
(26,3,1) |
(32,4,2) |
(38,4,4) |
(43,7,4) |
(48,9,5) |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
(110,70,50) |
(112,70,56) |
(113,76,57) |
(114,81,59) |
(115,85,62) |
(116,88,66) |
(117,90,71) |
(118,91,77) |
(119,91,84) |
(119,98,85) |
(119,104,87) |
(119,109,90) |
(119,113,94) |
(119,116,99) |
(119,118,105) |
(119,119,112) |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
0 |
1 |
6 |
43 |
81 |
121 |
166 |
212 |
262 |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
1 |
· |
· |
· |
· |
· |
· |
· |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
? |
635 |
601 |
564 |
519 |
472 |
425 |
377 |
326 |
274 |
224 |
175 |
129 |
86 |
48 |
7 |
1 |
2 |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
· |
\(\lambda=(112,107,107)\)
- Multiplicity: 2
- Dimension: 21
- Dominant: No
\(\lambda=(113,113,100)\)
- Multiplicity: 3
- Dimension: 105
- Dominant: No
\(\lambda=(115,109,102)\)
- Multiplicity: 20
- Dimension: 420
- Dominant: No
\(\lambda=(118,111,97)\)
- Multiplicity: 9
- Dimension: 1380
- Dominant: No
\(\lambda=(117,105,104)\)
- Multiplicity: 6
- Dimension: 195
- Dominant: No
\(\lambda=(116,115,95)\)
- Multiplicity: 3
- Dimension: 483
- Dominant: No
\(\lambda=(110,110,106)\)
- Multiplicity: 4
- Dimension: 15
- Dominant: No
\(\lambda=(113,112,101)\)
- Multiplicity: 9
- Dimension: 168
- Dominant: No
\(\lambda=(115,108,103)\)
- Multiplicity: 19
- Dimension: 336
- Dominant: No
\(\lambda=(118,110,98)\)
- Multiplicity: 11
- Dimension: 1287
- Dominant: No
\(\lambda=(116,114,96)\)
- Multiplicity: 6
- Dimension: 627
- Dominant: No
\(\lambda=(110,109,107)\)
- Multiplicity: 2
- Dimension: 15
- Dominant: No
\(\lambda=(113,111,102)\)
- Multiplicity: 13
- Dimension: 195
- Dominant: No
\(\lambda=(115,107,104)\)
- Multiplicity: 14
- Dimension: 234
- Dominant: No
\(\lambda=(118,109,99)\)
- Multiplicity: 12
- Dimension: 1155
- Dominant: No
\(\lambda=(116,113,97)\)
- Multiplicity: 9
- Dimension: 714
- Dominant: No
\(\lambda=(110,108,108)\)
- Multiplicity: 2
- Dimension: 6
- Dominant: No
\(\lambda=(113,110,103)\)
- Multiplicity: 18
- Dimension: 192
- Dominant: No
\(\lambda=(115,106,105)\)
- Multiplicity: 8
- Dimension: 120
- Dominant: No
\(\lambda=(118,108,100)\)
- Multiplicity: 12
- Dimension: 990
- Dominant: No
\(\lambda=(116,112,98)\)
- Multiplicity: 13
- Dimension: 750
- Dominant: No
\(\lambda=(113,109,104)\)
- Multiplicity: 16
- Dimension: 165
- Dominant: No
\(\lambda=(118,107,101)\)
- Multiplicity: 11
- Dimension: 798
- Dominant: No
\(\lambda=(119,113,94)\)
- Multiplicity: 1
- Dimension: 1890
- Dominant: Yes
\(\lambda=(116,111,99)\)
- Multiplicity: 16
- Dimension: 741
- Dominant: No
\(\lambda=(113,108,105)\)
- Multiplicity: 13
- Dimension: 120
- Dominant: No
\(\lambda=(114,114,98)\)
- Multiplicity: 4
- Dimension: 153
- Dominant: No
\(\lambda=(117,116,93)\)
- Multiplicity: 1
- Dimension: 624
- Dominant: No
\(\lambda=(118,106,102)\)
- Multiplicity: 9
- Dimension: 585
- Dominant: No
\(\lambda=(119,112,95)\)
- Multiplicity: 1
- Dimension: 1872
- Dominant: No
\(\lambda=(116,110,100)\)
- Multiplicity: 20
- Dimension: 693
- Dominant: No
\(\lambda=(111,111,104)\)
- Multiplicity: 4
- Dimension: 36
- Dominant: No
\(\lambda=(113,107,106)\)
- Multiplicity: 7
- Dimension: 63
- Dominant: No
\(\lambda=(114,113,99)\)
- Multiplicity: 7
- Dimension: 255
- Dominant: No
\(\lambda=(118,105,103)\)
- Multiplicity: 6
- Dimension: 357
- Dominant: No
\(\lambda=(119,111,96)\)
- Multiplicity: 2
- Dimension: 1800
- Dominant: No
\(\lambda=(117,115,94)\)
- Multiplicity: 2
- Dimension: 825
- Dominant: No
\(\lambda=(116,109,101)\)
- Multiplicity: 20
- Dimension: 612
- Dominant: No
\(\lambda=(111,110,105)\)
- Multiplicity: 8
- Dimension: 48
- Dominant: No
\(\lambda=(114,112,100)\)
- Multiplicity: 13
- Dimension: 312
- Dominant: No
\(\lambda=(118,104,104)\)
- Multiplicity: 2
- Dimension: 120
- Dominant: No
\(\lambda=(119,110,97)\)
- Multiplicity: 3
- Dimension: 1680
- Dominant: No
\(\lambda=(117,114,95)\)
- Multiplicity: 4
- Dimension: 960
- Dominant: No
\(\lambda=(116,108,102)\)
- Multiplicity: 19
- Dimension: 504
- Dominant: No
\(\lambda=(111,109,106)\)
- Multiplicity: 6
- Dimension: 42
- Dominant: No
\(\lambda=(114,111,101)\)
- Multiplicity: 17
- Dimension: 330
- Dominant: No
\(\lambda=(119,109,98)\)
- Multiplicity: 4
- Dimension: 1518
- Dominant: No
\(\lambda=(117,113,96)\)
- Multiplicity: 6
- Dimension: 1035
- Dominant: No
\(\lambda=(116,107,103)\)
- Multiplicity: 16
- Dimension: 375
- Dominant: No
\(\lambda=(111,108,107)\)
- Multiplicity: 4
- Dimension: 24
- Dominant: No
\(\lambda=(114,110,102)\)
- Multiplicity: 21
- Dimension: 315
- Dominant: No
\(\lambda=(119,108,99)\)
- Multiplicity: 4
- Dimension: 1320
- Dominant: No
\(\lambda=(117,112,97)\)
- Multiplicity: 9
- Dimension: 1056
- Dominant: No
\(\lambda=(116,106,104)\)
- Multiplicity: 11
- Dimension: 231
- Dominant: No
\(\lambda=(114,109,103)\)
- Multiplicity: 20
- Dimension: 273
- Dominant: No
\(\lambda=(119,107,100)\)
- Multiplicity: 5
- Dimension: 1092
- Dominant: No
\(\lambda=(117,111,98)\)
- Multiplicity: 12
- Dimension: 1029
- Dominant: No
\(\lambda=(116,105,105)\)
- Multiplicity: 3
- Dimension: 78
- Dominant: No
\(\lambda=(115,115,96)\)
- Multiplicity: 1
- Dimension: 210
- Dominant: No
\(\lambda=(112,112,102)\)
- Multiplicity: 7
- Dimension: 66
- Dominant: No
\(\lambda=(114,108,104)\)
- Multiplicity: 18
- Dimension: 210
- Dominant: No
\(\lambda=(115,114,97)\)
- Multiplicity: 4
- Dimension: 360
- Dominant: No
\(\lambda=(119,106,101)\)
- Multiplicity: 4
- Dimension: 840
- Dominant: No
\(\lambda=(118,116,92)\)
- Multiplicity: 1
- Dimension: 1050
- Dominant: Yes
\(\lambda=(117,110,99)\)
- Multiplicity: 15
- Dimension: 960
- Dominant: No
\(\lambda=(112,111,103)\)
- Multiplicity: 11
- Dimension: 99
- Dominant: No
\(\lambda=(114,107,105)\)
- Multiplicity: 11
- Dimension: 132
- Dominant: No
\(\lambda=(115,113,98)\)
- Multiplicity: 7
- Dimension: 456
- Dominant: No
\(\lambda=(119,105,102)\)
- Multiplicity: 3
- Dimension: 570
- Dominant: No
\(\lambda=(118,115,93)\)
- Multiplicity: 2
- Dimension: 1242
- Dominant: No
\(\lambda=(117,109,100)\)
- Multiplicity: 16
- Dimension: 855
- Dominant: No
\(\lambda=(112,110,104)\)
- Multiplicity: 15
- Dimension: 105
- Dominant: No
\(\lambda=(114,106,106)\)
- Multiplicity: 5
- Dimension: 45
- Dominant: No
\(\lambda=(115,112,99)\)
- Multiplicity: 12
- Dimension: 504
- Dominant: No
\(\lambda=(118,114,94)\)
- Multiplicity: 3
- Dimension: 1365
- Dominant: No
\(\lambda=(119,104,103)\)
- Multiplicity: 2
- Dimension: 288
- Dominant: No
\(\lambda=(117,108,101)\)
- Multiplicity: 16
- Dimension: 720
- Dominant: No
\(\lambda=(112,109,105)\)
- Multiplicity: 12
- Dimension: 90
- Dominant: No
\(\lambda=(115,111,100)\)
- Multiplicity: 16
- Dimension: 510
- Dominant: No
\(\lambda=(118,113,95)\)
- Multiplicity: 5
- Dimension: 1425
- Dominant: No
\(\lambda=(117,107,102)\)
- Multiplicity: 14
- Dimension: 561
- Dominant: No
\(\lambda=(112,108,106)\)
- Multiplicity: 10
- Dimension: 60
- Dominant: No
\(\lambda=(115,110,101)\)
- Multiplicity: 20
- Dimension: 480
- Dominant: No
\(\lambda=(118,112,96)\)
- Multiplicity: 7
- Dimension: 1428
- Dominant: No
\(\lambda=(117,106,103)\)
- Multiplicity: 11
- Dimension: 384
- Dominant: No
\(\lambda=(116,116,94)\)
- Multiplicity: 2
- Dimension: 276
- Dominant: No
\(\textbf{a}=(115,93,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,113,116)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,105,104)\)
- Multiplicity: 375
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,111,97)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,119,109)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,99,111)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,106,116)\)
- Multiplicity: 722
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,118,102)\)
- Multiplicity: 133
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,112,109)\)
- Multiplicity: 2642
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,99,116)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,111,102)\)
- Multiplicity: 1338
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,117,95)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,105,109)\)
- Multiplicity: 2642
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,92,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,118,107)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,98,109)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,112,114)\)
- Multiplicity: 647
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,111,107)\)
- Multiplicity: 3431
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,117,100)\)
- Multiplicity: 223
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,105,114)\)
- Multiplicity: 1728
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,112,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,104,107)\)
- Multiplicity: 1143
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,116,93)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,110,100)\)
- Multiplicity: 386
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,118,112)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,98,114)\)
- Multiplicity: 270
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,105,119)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,117,105)\)
- Multiplicity: 375
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,111,112)\)
- Multiplicity: 1856
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,98,119)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,110,105)\)
- Multiplicity: 2873
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,116,98)\)
- Multiplicity: 196
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,104,112)\)
- Multiplicity: 2289
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,111,117)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,103,105)\)
- Multiplicity: 144
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,109,98)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,117,110)\)
- Multiplicity: 170
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,97,112)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,104,117)\)
- Multiplicity: 375
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,116,103)\)
- Multiplicity: 668
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,110,110)\)
- Multiplicity: 3371
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,97,117)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,117,115)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,109,103)\)
- Multiplicity: 1394
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,115,96)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,103,110)\)
- Multiplicity: 1689
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,116,108)\)
- Multiplicity: 587
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,110,115)\)
- Multiplicity: 709
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,115,101)\)
- Multiplicity: 709
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,109,108)\)
- Multiplicity: 3939
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,103,115)\)
- Multiplicity: 1029
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,114,94)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,108,101)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,102,108)\)
- Multiplicity: 587
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,116,113)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,96,115)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,115,106)\)
- Multiplicity: 1204
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,109,113)\)
- Multiplicity: 1999
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,116,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,108,106)\)
- Multiplicity: 2879
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,114,99)\)
- Multiplicity: 435
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,102,113)\)
- Multiplicity: 1338
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,109,118)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,101,106)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,115,111)\)
- Multiplicity: 536
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,95,113)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,102,118)\)
- Multiplicity: 133
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,114,104)\)
- Multiplicity: 1596
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,108,111)\)
- Multiplicity: 3431
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,95,118)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,115,116)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,107,104)\)
- Multiplicity: 1143
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,113,97)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,101,111)\)
- Multiplicity: 892
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,108,116)\)
- Multiplicity: 587
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,114,109)\)
- Multiplicity: 1394
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,101,116)\)
- Multiplicity: 490
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,113,102)\)
- Multiplicity: 1338
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,119,95)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,107,109)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,94,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,112,95)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,106,102)\)
- Multiplicity: 133
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,100,109)\)
- Multiplicity: 223
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,114,114)\)
- Multiplicity: 270
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,113,107)\)
- Multiplicity: 2358
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,119,100)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,107,114)\)
- Multiplicity: 1728
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,106,107)\)
- Multiplicity: 2358
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,118,93)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,112,100)\)
- Multiplicity: 647
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,100,114)\)
- Multiplicity: 647
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,107,119)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,119,105)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,113,112)\)
- Multiplicity: 994
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,100,119)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,112,105)\)
- Multiplicity: 2642
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,118,98)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,106,112)\)
- Multiplicity: 2879
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,113,117)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,105,105)\)
- Multiplicity: 740
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,111,98)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,119,110)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,99,112)\)
- Multiplicity: 379
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,106,117)\)
- Multiplicity: 356
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,118,103)\)
- Multiplicity: 144
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,112,110)\)
- Multiplicity: 2289
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,99,117)\)
- Multiplicity: 170
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,111,103)\)
- Multiplicity: 1856
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,117,96)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,105,110)\)
- Multiplicity: 2873
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,92,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,104,103)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,118,108)\)
- Multiplicity: 97
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,98,110)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,112,115)\)
- Multiplicity: 379
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,117,101)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,111,108)\)
- Multiplicity: 3431
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,105,115)\)
- Multiplicity: 1204
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,116,94)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,110,101)\)
- Multiplicity: 709
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,104,108)\)
- Multiplicity: 1596
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,118,113)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,98,115)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,117,106)\)
- Multiplicity: 356
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,111,113)\)
- Multiplicity: 1338
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,110,106)\)
- Multiplicity: 3371
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,116,99)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,104,113)\)
- Multiplicity: 1999
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,111,118)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,103,106)\)
- Multiplicity: 356
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,109,99)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,117,111)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,97,113)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,104,118)\)
- Multiplicity: 148
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,116,104)\)
- Multiplicity: 722
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,110,111)\)
- Multiplicity: 2873
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,97,118)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,117,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,109,104)\)
- Multiplicity: 1999
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,115,97)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,103,111)\)
- Multiplicity: 1856
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,110,116)\)
- Multiplicity: 386
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,116,109)\)
- Multiplicity: 490
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,96,111)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,103,116)\)
- Multiplicity: 668
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,115,102)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,109,109)\)
- Multiplicity: 3939
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,96,116)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,114,95)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,108,102)\)
- Multiplicity: 587
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,102,109)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,116,114)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,115,107)\)
- Multiplicity: 1143
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,109,114)\)
- Multiplicity: 1394
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,108,107)\)
- Multiplicity: 3431
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,114,100)\)
- Multiplicity: 647
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,102,114)\)
- Multiplicity: 1151
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,109,119)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,101,107)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,107,100)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,115,112)\)
- Multiplicity: 379
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,95,114)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,102,119)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,114,105)\)
- Multiplicity: 1728
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,108,112)\)
- Multiplicity: 2879
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,95,119)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,115,117)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,107,105)\)
- Multiplicity: 1728
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,113,98)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,101,112)\)
- Multiplicity: 994
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,108,117)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,114,110)\)
- Multiplicity: 1151
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,101,117)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,113,103)\)
- Multiplicity: 1689
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,119,96)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,107,110)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,94,117)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,106,103)\)
- Multiplicity: 356
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,112,96)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,100,110)\)
- Multiplicity: 386
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,114,115)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,119,101)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,113,108)\)
- Multiplicity: 2232
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,107,115)\)
- Multiplicity: 1143
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,118,94)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,112,101)\)
- Multiplicity: 994
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,106,108)\)
- Multiplicity: 2879
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,100,115)\)
- Multiplicity: 536
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,119,106)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,99,108)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,113,113)\)
- Multiplicity: 685
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,93,115)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,112,106)\)
- Multiplicity: 2879
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,118,99)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,106,113)\)
- Multiplicity: 2358
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,113,118)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,105,106)\)
- Multiplicity: 1204
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,117,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,111,99)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,119,111)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,99,113)\)
- Multiplicity: 435
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,106,118)\)
- Multiplicity: 133
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,118,104)\)
- Multiplicity: 148
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,112,111)\)
- Multiplicity: 1856
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,99,118)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,111,104)\)
- Multiplicity: 2389
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,117,97)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,105,111)\)
- Multiplicity: 2873
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,92,118)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,112,116)\)
- Multiplicity: 196
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,104,104)\)
- Multiplicity: 148
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,110,97)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,118,109)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,98,111)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,105,116)\)
- Multiplicity: 740
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,117,102)\)
- Multiplicity: 321
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,111,109)\)
- Multiplicity: 3236
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,98,116)\)
- Multiplicity: 196
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,110,102)\)
- Multiplicity: 1151
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,116,95)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,104,109)\)
- Multiplicity: 1999
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,118,114)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,117,107)\)
- Multiplicity: 321
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,111,114)\)
- Multiplicity: 892
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,110,107)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,116,100)\)
- Multiplicity: 386
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,104,114)\)
- Multiplicity: 1596
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,111,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,103,107)\)
- Multiplicity: 668
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,115,93)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,109,100)\)
- Multiplicity: 223
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,117,112)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,97,114)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,104,119)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,116,105)\)
- Multiplicity: 740
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,110,112)\)
- Multiplicity: 2289
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,97,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,117,117)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,109,105)\)
- Multiplicity: 2642
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,115,98)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,103,112)\)
- Multiplicity: 1856
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,110,117)\)
- Multiplicity: 170
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,102,105)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,116,110)\)
- Multiplicity: 386
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,96,112)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,103,117)\)
- Multiplicity: 356
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,115,103)\)
- Multiplicity: 1029
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,109,110)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,96,117)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,116,115)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,108,103)\)
- Multiplicity: 1029
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,114,96)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,102,110)\)
- Multiplicity: 1151
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,115,108)\)
- Multiplicity: 1029
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,109,115)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,114,101)\)
- Multiplicity: 892
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,108,108)\)
- Multiplicity: 3811
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,102,115)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,113,94)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,107,101)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,101,108)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,115,113)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,95,115)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,114,106)\)
- Multiplicity: 1776
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,108,113)\)
- Multiplicity: 2232
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,115,118)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,107,106)\)
- Multiplicity: 2358
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,113,99)\)
- Multiplicity: 435
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,101,113)\)
- Multiplicity: 994
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,108,118)\)
- Multiplicity: 97
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,114,111)\)
- Multiplicity: 892
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,94,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,101,118)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,113,104)\)
- Multiplicity: 1999
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,119,97)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,107,111)\)
- Multiplicity: 3431
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,94,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,114,116)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,106,104)\)
- Multiplicity: 722
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,112,97)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,100,111)\)
- Multiplicity: 536
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,107,116)\)
- Multiplicity: 668
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,119,102)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,113,109)\)
- Multiplicity: 1999
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,100,116)\)
- Multiplicity: 386
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,112,102)\)
- Multiplicity: 1409
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,118,95)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,106,109)\)
- Multiplicity: 3236
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,93,116)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,105,102)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,119,107)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,99,109)\)
- Multiplicity: 76
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,113,114)\)
- Multiplicity: 435
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,112,107)\)
- Multiplicity: 2959
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,118,100)\)
- Multiplicity: 97
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,106,114)\)
- Multiplicity: 1776
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,113,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,105,107)\)
- Multiplicity: 1728
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,117,93)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,111,100)\)
- Multiplicity: 536
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,119,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,99,114)\)
- Multiplicity: 435
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,106,119)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,118,105)\)
- Multiplicity: 144
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,112,112)\)
- Multiplicity: 1409
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,99,119)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,111,105)\)
- Multiplicity: 2873
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,117,98)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,105,112)\)
- Multiplicity: 2642
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,112,117)\)
- Multiplicity: 80
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,104,105)\)
- Multiplicity: 375
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,110,98)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,118,110)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,98,112)\)
- Multiplicity: 196
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,105,117)\)
- Multiplicity: 375
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,117,103)\)
- Multiplicity: 356
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,111,110)\)
- Multiplicity: 2873
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,98,117)\)
- Multiplicity: 121
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,118,115)\)
- Multiplicity: 3
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,110,103)\)
- Multiplicity: 1689
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,116,96)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,104,110)\)
- Multiplicity: 2289
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,117,108)\)
- Multiplicity: 275
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,97,110)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,111,115)\)
- Multiplicity: 536
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,116,101)\)
- Multiplicity: 490
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,110,108)\)
- Multiplicity: 3811
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,104,115)\)
- Multiplicity: 1143
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,115,94)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,109,101)\)
- Multiplicity: 490
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,103,108)\)
- Multiplicity: 1029
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,117,113)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,97,115)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,116,106)\)
- Multiplicity: 722
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,110,113)\)
- Multiplicity: 1689
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,109,106)\)
- Multiplicity: 3236
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,115,99)\)
- Multiplicity: 379
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,103,113)\)
- Multiplicity: 1689
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,110,118)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,102,106)\)
- Multiplicity: 133
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,108,99)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,116,111)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,96,113)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,103,118)\)
- Multiplicity: 144
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,115,104)\)
- Multiplicity: 1143
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,109,111)\)
- Multiplicity: 3236
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,96,118)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,116,116)\)
- Multiplicity: 17
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,108,104)\)
- Multiplicity: 1596
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,114,97)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,102,111)\)
- Multiplicity: 1338
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,109,116)\)
- Multiplicity: 490
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,115,109)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,102,116)\)
- Multiplicity: 587
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,114,102)\)
- Multiplicity: 1151
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,108,109)\)
- Multiplicity: 3939
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,95,116)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,113,95)\)
- Multiplicity: 14
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,107,102)\)
- Multiplicity: 321
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,101,109)\)
- Multiplicity: 490
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,115,114)\)
- Multiplicity: 150
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,114,107)\)
- Multiplicity: 1728
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,108,114)\)
- Multiplicity: 1596
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,107,107)\)
- Multiplicity: 2959
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,113,100)\)
- Multiplicity: 685
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,101,114)\)
- Multiplicity: 892
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,108,119)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,100,107)\)
- Multiplicity: 20
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,114,112)\)
- Multiplicity: 647
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,94,114)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,101,119)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,113,105)\)
- Multiplicity: 2232
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,119,98)\)
- Multiplicity: 11
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,107,112)\)
- Multiplicity: 2959
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,94,119)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,114,117)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,106,105)\)
- Multiplicity: 1204
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,112,98)\)
- Multiplicity: 196
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,100,112)\)
- Multiplicity: 647
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,107,117)\)
- Multiplicity: 321
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,119,103)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,113,110)\)
- Multiplicity: 1689
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,100,117)\)
- Multiplicity: 223
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,112,103)\)
- Multiplicity: 1856
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,118,96)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,106,110)\)
- Multiplicity: 3371
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,93,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,105,103)\)
- Multiplicity: 144
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,111,96)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,119,108)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,99,110)\)
- Multiplicity: 170
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,113,115)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,118,101)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,112,108)\)
- Multiplicity: 2879
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,106,115)\)
- Multiplicity: 1204
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,117,94)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,111,101)\)
- Multiplicity: 892
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,105,108)\)
- Multiplicity: 2232
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,119,113)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,99,115)\)
- Multiplicity: 379
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,118,106)\)
- Multiplicity: 133
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,112,113)\)
- Multiplicity: 994
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,111,106)\)
- Multiplicity: 3236
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,117,99)\)
- Multiplicity: 170
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,105,113)\)
- Multiplicity: 2232
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,112,118)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,104,106)\)
- Multiplicity: 722
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,116,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,110,99)\)
- Multiplicity: 170
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,118,111)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,98,113)\)
- Multiplicity: 249
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,105,118)\)
- Multiplicity: 144
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,117,104)\)
- Multiplicity: 375
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,111,111)\)
- Multiplicity: 2389
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,98,118)\)
- Multiplicity: 56
- Dimension: 1
- Error: 0
\(\textbf{a}=(92,118,116)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,110,104)\)
- Multiplicity: 2289
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,116,97)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,104,111)\)
- Multiplicity: 2389
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,111,116)\)
- Multiplicity: 284
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,103,104)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,117,109)\)
- Multiplicity: 223
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,97,111)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,104,116)\)
- Multiplicity: 722
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,116,102)\)
- Multiplicity: 587
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,110,109)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,97,116)\)
- Multiplicity: 125
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,115,95)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,109,102)\)
- Multiplicity: 878
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,103,109)\)
- Multiplicity: 1394
- Dimension: 1
- Error: 0
\(\textbf{a}=(95,117,114)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,116,107)\)
- Multiplicity: 668
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,110,114)\)
- Multiplicity: 1151
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,109,107)\)
- Multiplicity: 3694
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,115,100)\)
- Multiplicity: 536
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,103,114)\)
- Multiplicity: 1394
- Dimension: 1
- Error: 0
\(\textbf{a}=(97,110,119)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,102,107)\)
- Multiplicity: 321
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,108,100)\)
- Multiplicity: 97
- Dimension: 1
- Error: 0
\(\textbf{a}=(98,116,112)\)
- Multiplicity: 196
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,96,114)\)
- Multiplicity: 73
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,103,119)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,115,105)\)
- Multiplicity: 1204
- Dimension: 1
- Error: 0
\(\textbf{a}=(105,109,112)\)
- Multiplicity: 2642
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,96,119)\)
- Multiplicity: 4
- Dimension: 1
- Error: 0
\(\textbf{a}=(93,116,117)\)
- Multiplicity: 5
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,108,105)\)
- Multiplicity: 2232
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,114,98)\)
- Multiplicity: 270
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,102,112)\)
- Multiplicity: 1409
- Dimension: 1
- Error: 0
\(\textbf{a}=(100,109,117)\)
- Multiplicity: 223
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,115,110)\)
- Multiplicity: 709
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,95,112)\)
- Multiplicity: 2
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,102,117)\)
- Multiplicity: 321
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,114,103)\)
- Multiplicity: 1394
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,108,110)\)
- Multiplicity: 3811
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,95,117)\)
- Multiplicity: 27
- Dimension: 1
- Error: 0
\(\textbf{a}=(96,115,115)\)
- Multiplicity: 81
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,107,103)\)
- Multiplicity: 668
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,113,96)\)
- Multiplicity: 49
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,101,110)\)
- Multiplicity: 709
- Dimension: 1
- Error: 0
\(\textbf{a}=(104,114,108)\)
- Multiplicity: 1596
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,108,115)\)
- Multiplicity: 1029
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,119,94)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(112,113,101)\)
- Multiplicity: 994
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,107,108)\)
- Multiplicity: 3431
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,101,115)\)
- Multiplicity: 709
- Dimension: 1
- Error: 0
\(\textbf{a}=(119,106,101)\)
- Multiplicity: 24
- Dimension: 1
- Error: 0
\(\textbf{a}=(118,100,108)\)
- Multiplicity: 97
- Dimension: 1
- Error: 0
\(\textbf{a}=(99,114,113)\)
- Multiplicity: 435
- Dimension: 1
- Error: 0
\(\textbf{a}=(117,94,115)\)
- Multiplicity: 13
- Dimension: 1
- Error: 0
\(\textbf{a}=(107,113,106)\)
- Multiplicity: 2358
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,119,99)\)
- Multiplicity: 15
- Dimension: 1
- Error: 0
\(\textbf{a}=(106,107,113)\)
- Multiplicity: 2358
- Dimension: 1
- Error: 0
\(\textbf{a}=(94,114,118)\)
- Multiplicity: 7
- Dimension: 1
- Error: 0
\(\textbf{a}=(114,106,106)\)
- Multiplicity: 1776
- Dimension: 1
- Error: 0
\(\textbf{a}=(116,118,92)\)
- Multiplicity: 1
- Dimension: 1
- Error: 0
\(\textbf{a}=(115,112,99)\)
- Multiplicity: 379
- Dimension: 1
- Error: 0
\(\textbf{a}=(113,100,113)\)
- Multiplicity: 685
- Dimension: 1
- Error: 0
\(\textbf{a}=(101,107,118)\)
- Multiplicity: 117
- Dimension: 1
- Error: 0
\(\textbf{a}=(103,119,104)\)
- Multiplicity: 29
- Dimension: 1
- Error: 0
\(\textbf{a}=(102,113,111)\)
- Multiplicity: 1338
- Dimension: 1
- Error: 0
\(\textbf{a}=(108,100,118)\)
- Multiplicity: 97
- Dimension: 1
- Error: 0
\(\textbf{a}=(110,112,104)\)
- Multiplicity: 2289
- Dimension: 1
- Error: 0
\(\textbf{a}=(111,118,97)\)
- Multiplicity: 38
- Dimension: 1
- Error: 0
\(\textbf{a}=(109,106,111)\)
- Multiplicity: 3236
- Dimension: 1
- Error: 0
Below is a plot displaying the Schur decomposition. In the \(\lambda=(\lambda_0,\lambda_1)\) spot we place \(\beta_{39,\lambda}(2,6;8)\), the multiplicity of \(\textbf{S}_{\lambda}\) occuring in the decomposition of \(K_{39,1}(2,6;8)\). Here \(\lambda\) is the weight \((\lambda_0,\lambda_1,\lambda_2)\) where \(\lambda_2\) is determined by the fact that \(|\lambda|\) equals \(d(p+q)+b\). The dominant weights are displayed in green. Click on an entry for more info!
Below is a plot displaying the multigraded Betti numbers. In the \((a_0,a_1)\) spot we place \(\beta_{39,\textbf{a}}(2,6;8)\). Here \(\textbf{a}\) is the weight \((a_0,a_1,a_2)\) where \(a_2\) is determined by the fact that \(|\textbf{a}|\) equals \(d(p+q)+b\). Entries with error corrected via our Schur decomposition algorithm are in orange. Click on an entry for more info!